•  
  •  
 

Coal Geology & Exploration

Authors

SANG Shuxun, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Resource and Geoscience, China University of Mining and Technology, Xuzhou 221116, ChinaFollow
LIU Shiqi, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
HAN Sijie, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
ZHENG Sijian, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
LIU Tong, Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China; Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
ZHOU Xiaozhi, School of Resource and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
WANG Ran, School of Resource and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
WANG Meng, School of Resource and Geoscience, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Methane is the most important non-CO2 greenhouse gas, which has attracted more and more attention. Coal methane is the most important methane emission source in China, and China is also the country with the largest amount of coal methane emissions in the world. Therefore, the effective emission control and the efficient development and utilization of coal methane have triple benefits, such as greenhouse gas emission reduction, energy gas development and utilization, and hazardous gas control. Based on the accumulation of systematic investigation and research, the background of coal methane emission control was summarized and conclusion was made for the coal methane emission and its control all over the world and in the representative countries. Besides, the process of coal methane development, utilization and its emission control, as well as the development trend in China was explained. Then, the path and potential of coal methane emission reduction in China were discussed and looked forward. The current researches have shown that the coal methane emission in China mainly comes from the underground coal mining in the form of ventilation air methane, which will also be the main source of coal methane in China for a long time. With the increase of closed mines in China, the coal methane emissions from closed mines will increase, which is a key coal methane source that cannot be ignored in China. With the proposal of "carbon neutrality" goal by China, the policy guidance of greenhouse gas emission reduction has gradually become the focus of the coal methane emission control in China, and the direction of coal methane emission reduction was also clarified. Through the coal methane emission control, the key technology path has been formed in China, which is characterized by the full concentration utilization of coal methane, including the exploration, exploitation and utilization of coalbed methane, the drainage and utilization of coalbed methane in closed or abandoned coal mine, and the utilization of ventilation air gas in the full life cycle before, during and after coal mining. In China, coal methane emission control still faces great pressure and severe challenges with many problems of policy, system and technology to be solved urgently. Thus, the major development directions of the coal methane control in China include the efficient exploration and development technology system of coalbed methane breaking through the adaptability to complex geological conditions, the accurate, digital and intelligent low-carbon efficient drainage technology system of coal mine gas, the emission reduction control and utilization technology system of coal methane in the closed/abandoned coal mine, and the comprehensive utilization technology system of full-concentration coal methane.

Keywords

coal methane control, coal mine gas, coalbed methane, closed coal mine gas, emission reduction potential

DOI

10.12363/issn.1001-1986.22.11.0908

Reference

[1] IPCC. Special report on global warming of 1.5℃[M]. Cambridge:Cambridge University Press,2018.

[2] 中华人民共和国国家发展和改革委员会应对气候变化司. 中华人民共和国气候变化第二次国家信息通报[M]. 北京:中国经济出版社,2013.

[3] 陈美英,刘亢,宁树正,等. 中国煤层气资源区划研究[J]. 中国煤炭地质,2020,32(11):1−5.

CHEN Meiying,LIU Kang,NING Shuzheng,et al. Study on CBM resources zoning in China[J]. Coal Geology of China,2020,32(11):1−5.

[4] 刘文革,徐鑫,韩甲业,等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报,2022,47(1):470−479.

LIU Wenge,XU Xin,HAN Jiaye,et al. Trend model and key technologies of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society,2022,47(1):470−479.

[5] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.

SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.

[6] 桑树勋,王冉,周效志,等. 论煤地质学与碳中和[J]. 煤田地质与勘探,2021,49(1):1−11.

SANG Shuxun,WANG Ran,ZHOU Xiaozhi,et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration,2021,49(1):1−11.

[7] 桑树勋. 碳中和下煤炭行业低碳化发展需求与模式[C]//国家电力投资集团有限公司,中国国际经济交流中心. 低碳发展蓝皮书. 北京:社会科学文献出版社,2021.

[8] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81.

[9] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.

GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.

[10] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

[11] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.

[12] 姜华,李艳萍,高健. 双碳背景下煤基产业绿色低碳转型之路[J]. 环境工程技术学报,2022,12(5):1580−1583.

JIANG Hua,LI Yanping,GAO Jian. The road of green and low–carbon transformation of coal–based industry under carbon peak and carbon neutrality background[J]. Journal of Environmental Engineering Technology,2022,12(5):1580−1583.

[13] 张福凯,徐龙君. 甲烷对全球气候变暖的影响及减排措施[J]. 矿业安全与环保,2004,31(5):6−9.

ZHANG Fukai,XU Longjun. Effect of methane on global warming and mitigating measures[J]. Mining Safety & Environmental Protection,2004,31(5):6−9.

[14] ABT Associates Inc. ,ICF International,RTI International. The 2020 accomplishments in methane mitigation,recovery,and use through U. S. –Supported international efforts. Washington D. C.:United States Environmental Protection Agency,2021.

[15] World Meteorological Organization. Greenhouse gas bulletin:Another year another record[R/OL]. (2021-10-25) [2021-10-25]. https://public.wmo.int/en/media/press–release/greenhouse–gas–bulletin–another–year–another–record.

[16] IEA. World energy outlook 2019[M]. Paris:IEA Publications,2019.

[17] United Nations Environment Programme,Climate and Clean Air Coalition. Global methane assessment:Benefits and costs of mitigating methane emissions[R]. Nairobi:United Nations Environment Programme,2021.

[18] SCHWIETZKE S,SHERWOOD O A,BRUHWILER L M P,et al. Upward revision of global fossil fuel methane emissions based on isotope database[J]. Nature,2017,543:452.

[19] Global Methane Initiative. Methane emissions data[EB/OL]. (2022-03-22) [2022-03-22]. https://www.globalmethane.org/methane–emissions–data.aspx.

[20] United Nations Economic Commission for Europe,Global Methane Initiative. Best practice guidance for effective methane recovery and use from abandoned coal mines[R]. Geneva:United Nations Economic Commission for Europe,2019.

[21] KHOLOD N,EVANS M,PILCHER R C,et al. Global methane emissions from coal mining to continue growing even with declining coal production[J]. Journal of Cleaner Production,2020,256:120489.

[22] 张江华,李国富,孟召平,等. 过采空区煤层气井地面抽采关键技术[J]. 煤炭学报,2020,45(7):2552−2561.

ZHANG Jianghua,LI Guofu,MENG Zhaoping,et al. Key technology of surface extraction for coalbed methane wells crossing goaf[J]. Journal of China Coal Society,2020,45(7):2552−2561.

[23] LI Xiyue,GE Binbin,YAN Jin,et al. Review on hydrate–based CH4 separation from low−concentration coalbed methane in China[J]. Energy & Fuels,2021,35(10):8494−8509.

[24] 秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522.

QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522.

[25] 桑树勋,周效志,刘世奇,等. 岩石力学地层理论方法及其煤系气高效勘探开发应用基础述评[J]. 地质学报,2022,96(1):304−316.

SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. A review of mechanical stratigraphy methodology and its application in high−efficient exploration and development of coal measure gas[J]. Acta Geologica Sinica,2022,96(1):304−316.

[26] 桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543.

SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.

[27] 孟召平,李国富,田永东,等. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展[J]. 煤炭科学技术,2022,50(1):204−211.

MENG Zhaoping,LI Guofu,TIAN Yongdong,et al. Research progress on surface drainage of coalbed methane in abandoned mine gobs of Jincheng Mining Area[J]. Coal Science and Technology,2022,50(1):204−211.

[28] 袁亮. 推动我国关闭/废弃矿井资源精准开发利用研究[J]. 煤炭经济研究,2019,39(5):1.

YUAN Liang. Promote the precise development and utilization of closed/abandoned mine resources in China[J]. Coal Economic Research,2019,39(5):1.

[29] 刘毅,王婧,车轲,等. 温室气体的卫星遥感:进展与趋势[J]. 遥感学报,2021,25(1):53−64.

LIU Yi,WANG Jing,CHE Ke,et al. Satellite remote sensing of greenhouse gases:Progress and trends[J]. Journal of Remote Sensing,2021,25(1):53−64.

[30] 刘良云,陈良富,刘毅,等. 全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报,2022,26(2):243−267.

LIU Liangyun,CHEN Liangfu,LIU Yi,et al. Satellite remote sensing for global stocktaking:Methods,progress and perspectives[J]. Journal of Remote Sensing,2022,26(2):243−267.

[31] 王宁. 基于区域因子分析的我国煤矿甲烷排放与控排对策研究[D]. 北京:中国矿业大学(北京),2013.

WANG Ning. Research on China CMM emissions and control measures based on regional factor analysis[D]. Beijing:China University of Mining and Technology (Beijing),2013.

[32] 王耀锋. 中国煤矿瓦斯抽采技术装备现状与展望[J]. 煤矿安全,2020,51(10):67−77.

WANG Yaofeng. Current situation and prospect of gas extraction technology and equipment for coal mines in China[J]. Safety in Coal Mines,2020,51(10):67−77.

[33] ZHENG Chunshan,JIANG Bingyou,XUE Sheng,et al. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits:A review[J]. Process Safety and Environmental Protection,2019,127:103−124.

[34] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.

YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.

[35] 贺天才,王保玉,田永东. 晋城矿区煤与煤层气共采研究进展及急需研究的基本问题[J]. 煤炭学报,2014,39(9):1779−1785.

HE Tiancai,WANG Baoyu,TIAN Yongdong. Development and issues with coal and coal–bed methane simultaneous exploitation in Jincheng Mining Area[J]. Journal of China Coal Society,2014,39(9):1779−1785.

[36] WANG Xinxin,ZHOU Fubao,LING Yihan,et al. Overview and outlook on utilization technologies of low−concentration coal mine methane[J]. Energy & Fuels,2021,35(19):15398−15423.

[37] 林柏泉,李庆钊. 煤矿瓦斯开发与阶梯利用[M]. 北京:科学出版社,2021.

[38] 柳君波,徐向阳,霍志佳,等. 中国煤炭格局变化对煤矿甲烷排放的影响及原因[J]. 生态经济,2021,37(7):176−182.

LIU Junbo,XU Xiangyang,HUO Zhijia,et al. Influence of coal pattern change on coal mine methane emission in China[J]. Ecological Economy,2021,37(7):176−182.

[39] 陈宜亮,马晓钟,魏化兴. 煤矿通风瓦斯氧化技术及氧化热利用方式[J]. 中国煤层气,2007,4(4):27−30.

CHEN Yiliang,MA Xiaozhong,WEI Huaxing. Methane oxidation technology for VAM and mode of utilization of oxidation heat[J]. China Coalbed Methane,2007,4(4):27−30.

[40] 凯文·杜兰. 中国废弃煤矿的甲烷排放[C]//第十一届国际煤层气研讨会论文集. 北京:2011.

[41] 司荣军,李润之. 低浓度含氧瓦斯爆炸动力特性及防控关键技术[J]. 煤炭科学技术,2020,48(10):17−36.

SI Rongjun,LI Runzhi. Dynamic characteristics of low–concentration oxygen–containing gas explosion and prevention and control key technologies[J]. Coal Science and Technology,2020,48(10):17−36.

[42] 任世华,谢亚辰,焦小淼,等. 煤炭开发过程碳排放特征及碳中和发展的技术途径[J]. 工程科学与技术,2022,54(1):60−68.

REN Shihua,XIE Yachen,JIAO Xiaomiao,et al. Characteristics of carbon emissions during coal development and technical approaches for carbon neutral development[J]. Advanced Engineering Sciences,2022,54(1):60−68.

[43] 贺晨旻,迟远英,向翩翩,等. 我国甲烷排放情景分析:IPAC模型结果[J]. 大气科学学报,2022,45(3):414−427.

HE Chenmin,CHI Yuanying,XIANG Pianpian,et al. CH4 emission scenario analysis for China:IPAC results[J]. Transactions of Atmospheric Sciences,2022,45(3):414−427.

[44] 戴金星,戚发厚. 从煤成气观点评价沁水盆地含气远景[J]. 石油勘探与开发,1981,8(6):19−33.

DAI Jinxing,QI Fahou. Evaluation of gas potential in Qinshui Basin from the viewpoint of coal formed gas[J]. Petroleum Exploration and Development,1981,8(6):19−33.

[45] 李国富,李贵红,刘刚. 晋城矿区典型区煤层气地面抽采效果分析[J]. 煤炭学报,2014,39(9):1932−1937.

LI Guofu,LI Guihong,LIU Gang. Analysis on the ground extraction effect of coal–bed methane at typical area in Jincheng,China[J]. Journal of China Coal Society,2014,39(9):1932−1937.

[46] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18.

XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of“double carbon” [J]. China Petroleum Exploration,2021,26(3):9−18.

[47] 毕彩芹. 中国煤层气资源量及分布[J]. 石油知识,2018(2):12.

BI Caiqin. Coal bed methane resources and distribution in China[J]. Petroleum Knowledge,2018(2):12.

[48] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

[49] SONG Y,LIU S,MA X,et al. Accumulation models for coalbed methane in medium−to high−rank coals:Examples from the southern Qinshui Basin and southeastern Ordos Basin[J]. Australian Journal of Earth Sciences,2018,65(4):575−590.

[50] 张懿,朱光辉,郑求根,等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气,2022,9(4):1−8.

ZHANG Yi,ZHU Guanghui,ZHENG Qiugen,et al. Distribution characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas,2022,9(4):1−8.

[51] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18.

GAO Deli,BI Yansen,XIAN Bao’an. Technical advances in well types and drilling & completion for high–efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18.

[52] 杨陆武,崔玉环,王国玲. 影响中国煤层气产业发展的技术和非技术要素分析[J]. 煤炭学报,2021,46(8):2400−2411.

YANG Luwu,CUI Yuhuan,WANG Guoling. Analysis of technical and regulational aspects affecting China CBM progresses[J]. Journal of China Coal Society,2021,46(8):2400−2411.

[53] 张博,李蕙竹,仲冰,等. 中国甲烷控排面临的形势、问题与对策[J]. 中国矿业,2022,31(2):1−10.

ZHANG Bo,LI Huizhu,ZHONG Bing,et al. The situation,problems and countermeasures for the controls of China’s methane emissions[J]. China Mining Magazine,2022,31(2):1−10.

[54] 马翠梅,高敏惠,褚振华. 中国煤矿甲烷排放标准执行情况及政策建议[J]. 世界环境,2021(5):47−49.

MA Cuimei,GAO Minhui,CHU Zhenhua. Implementation of China’s emission standard of coalbed methane/coal mine gas and related policy recommendations[J]. World Environment,2021(5):47−49.

[55] 李庆钊,张桂韵,刘鑫鑫,等. 煤矿超低浓度瓦斯蓄热燃烧特性及其关键影响因素分析[J]. 中国电机工程学报,2021,41(23):8078−8087.

LI Qingzhao,ZHANG Guiyun,LIU Xinxin,et al. Analysis on the properties of coal mine ultra−low concentration methane combustion and its key influencing factors[J]. Proceedings of the CSEE,2021,41(23):8078−8087.

[56] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.

[57] 杨睿月,黄中伟,李根生,等. 煤层气水平井水力喷射分段造穴技术探索[J]. 煤炭学报,2022,47(9):3284−3297.

YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al. Investigation of hydraulic jet multistage cavity completion in coalbed methane horizontal wells[J]. Journal of China Coal Society,2022,47(9):3284−3297.

[58] 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气,2021,33(4):120−128.

SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas,2021,33(4):120−128.

[59] 黎力,梁卫国,李治刚,等. 注热CO2驱替增产煤层气试验研究[J]. 煤炭学报,2017,42(8):2044−2050.

LI Li,LIANG Weiguo,LI Zhigang,et al. Experimental investigation on enhancing coalbed methane recovery by injecting high temperature CO2[J]. Journal of China Coal Society,2017,42(8):2044−2050.

[60] 郝海金,陈召英,鲁博. 我国煤层气(煤矿瓦斯)抽采利用现状及对其发展的思考[J]. 山西煤炭,2019,39(4):1−9.

HAO Haijin,CHEN Zhaoying,LU Bo. Current status and development of coalbed methane (coal mine gas) extraction and utilization in China[J]. Shanxi Coal,2019,39(4):1−9.

[61] 谢和平,任世华,吴立新,等. 煤炭碳中和战略与技术路径[M]. 北京:科学出版社,2022.

[62] 王刚,杨曙光,张寿平,等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术,2020,48(3):154−161.

WANG Gang,YANG Shuguang,ZHANG Shouping,et al. Status and prospect of coal mine gas drainage and utilization technology in Xinjiang coal mining area[J]. Coal Science and Technology,2020,48(3):154−161.

[63] 李国富,李超,霍春秀,等. 山西重点煤矿区瓦斯梯级利用关键技术与工程示范[J]. 煤田地质与勘探,2022,50(9):42−50.

LI Guofu,LI Chao,HUO Chunxiu,et al. Key technology and engineering demonstration for cascade utilization of gas in key coal mining areas of Shanxi Province,China[J]. Coal Geology & Exploration,2022,50(9):42−50.

[64] 袁亮. 废弃矿井资源综合开发利用助力实现“碳达峰、碳中和”目标[J]. 科技导报,2021,39(13):1.

YUAN Liang. Comprehensive development and utilization of abandoned mine resources will help achieve the goal of“carbon peak and carbon neutral”[J]. Science & Technology Review,2021,39(13):1.

[65] 张千贵,李权山,范翔宇,等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业,2022,42(6):130−145.

ZHANG Qiangui,LI Quanshan,FAN Xiangyu,et al. Current situation and development trend of theories and technologies for coal and CBM co−mining in China[J]. Natural Gas Industry,2022,42(6):130−145.

[66] 门相勇,娄钰,王一兵,等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业,2022,42(6):173−178.

MEN Xiangyong,LOU Yu,WANG Yibing,et al. Development achievements of China’s CBM industry since the 13th Five–Year Plan and suggestions[J]. Natural Gas Industry,2022,42(6):173−178.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.