•  
  •  
 

Coal Geology & Exploration

Authors

CAO Daiyong, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, ChinaFollow
WEI Yingchun, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China;
QIN Guohong, School of Geographic Sciences, Hebei Normal University, Shijiazhuang 050024, China
NING Shuzheng, General Prospecting Institute of China National Administration of Coal Ceology, Beijing 100039, China
WANG Anmin, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China;
ZHANG Yun, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
LI Xin, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
WEI Jinhao, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
XU Laixin, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

The accumulation and distribution of strategic metal minerals in coal measures is the comprehensive result of multi-factors, multi-stages and multi-levels, amongst which the tectonic control is an important factor. The tectonic controlling factors of strategic metal enrichment and mineralization in coal measures include tectonic background, tectonic movement, tectono-magmatic activity, etc., which are reflected in the control of the metal mineral carrier (i.e., coal-bearing rock series), the source of metallogenic materials and the initial aggregation of elements and the later migration and recombination. The entire process of formation and evolution of coal-bearing basins is pervasively influenced by the control of tectonic processes on the enrichment and mineralization of strategic metals, as indicated by coal-measure mineral product source correlation, coupled mineralization, and coexistence in the same basin. The tectonic movement before coal-accumulating period established the structural pattern of coal basin basement, and the subsidence and uplift provided the place of coal-accumulating and the source area of coal measures, which thereby determines the material basis of coal measures and its strategic metal elements. During the coal-accumulating period, the tectonism is mainly reflected in the main forms of basin-mountain coupling behavior, syndepositional structure activity, magmatic activity, etc. Through the influence of coal-accumulating source-to-sink system, the lithofacies-paleogeography and coal-accumulating environment, the types of peat swamp and geochemistry conditions, tectonic process determines the migration and primary accumulation of metallogenic materials in the peatization and diagenesis stages. The tectonic-thermal evolution after the coal-accumulating period has different effects on the migration and reorganization of metal elements, reflecting in the tectonic subsidence heating and magma thermal effect, the tectonic framework and ore-bearing hydrothermal activity, the stress-strain ore-controlling mechanism. Besides, the positioning of coalfield structures determines the mineral deposit resources condition. The study on the tectonic control over the enrichment and metallogenesis of strategic metal elements in coal measures should focus on the following four aspects: the tectonic framework and evolution associated with the sedimentary filling of coal basin, the characteristics of faults as migration channels of ore-bearing fluids, the influence of magmatic activity in different periods and the tectonic physical chemistry effect induced from stress and strain relationship.

Keywords

coal measures, strategic metal elements, metallogenesis, tectonic control, coalfield structure

DOI

10.12363/issn.1001-1986.22.09.0734

Reference

[1] 蒋少涌,温汉捷,许成,等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金,2019,30(2):112−118.

JIANG Shaoyong,WEN Hanjie,XU Cheng,et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,2019,30(2):112−118.

[2] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,30(2):106−111.

ZHAI Mingguo,WU Fuyuan,HU Ruizhong,et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,30(2):106−111.

[3] 任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.

[4] 代世峰,赵蕾,魏强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729.

DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal–bearing sequences in China:Enrichment types and distribution[J]. Chinese Science Bulletin,2020,65(33):3715−3729.

[5] 代世峰,刘池洋,赵蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.

DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal–bearing strata:Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.

[6] 任德贻,代世峰. 煤和含煤岩系中潜在的共伴生矿产资源:一个值得重视的问题[J]. 中国煤炭地质,2009,21(10):1−4.

REN Deyi,DAI Shifeng. Potential coexisting and associated mineral resources in coal and coal−bearing strata:An issue should pay close attention to[J]. Coal Geology of China,2009,21(10):1−4.

[7] SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253−289.

[8] SEREDIN V V,DAI Shifeng,SUN Yuzhuang,et al. Coal deposits as promising sources of rare metals for alternative power and energy−efficient technologies[J]. Applied Geochemistry,2013,31:1−11.

[9] 代世峰,任徳贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.

DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal–hosted rare metal deposits:Genetic types,modes of occurrence,and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.

[10] DAI Shifeng,YAN Xiaoyun,WARD C R,et al. Valuable elements in Chinese coals:A review[J]. International Geology Review,2018,60(5/6):590−620.

[11] DAI Shifeng,NECHAEV V P,CHEKRYZHOV I Y,et al. A model for Nb–Zr–REE–Ga enrichment in Lopingian altered alkaline volcanic ashes:Key evidence of H–O isotopes[J]. Lithos,2018,302/303:359−369.

[12] 曹代勇,李小明,邓觉梅. 煤化作用与构造–热事件的耦合效应研究:盆地动力学过程的地质记录[J]. 地学前缘,2009,16(4):52−60.

CAO Daiyong,LI Xiaoming,DENG Juemei. Coupling effect between coalification and tectonic–thermal events:Geological records of geodynamics of sedimentary basin[J]. Earth Science Frontiers,2009,16(4):52−60.

[13] 曹代勇,秦国红,魏迎春,等. 煤系矿产资源赋存的盆地动力学控制:研究现状与展望[J]. 中国煤炭地质,2020,32(9):38−46.

CAO Daiyong,QIN Guohong,WEI Yingchun,et al. Basin dynamics controlling of coal measures mineral resources hosting:Research status and expectation[J]. Coal Geology of China,2020,32(9):38−46.

[14] 刘桂建,彭子成,杨萍玥,等. 煤中微量元素富集的主要因素分析[J]. 煤田地质与勘探,2001,29(4):1−4.

LIU Guijian,PENG Zicheng,YANG Pingyue,et al. Mian factors controlling concentration of trace element in coal[J]. Coal Geology & Exploration,2001,29(4):1−4.

[15] REN Deyi,ZHAO Fenghua,WANG Yunquan,et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology,1999,40(2/3):109−118.

[16] 王文峰,王文龙,刘双双,等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探,2021,49(1):65−80.

WANG Wenfeng,WANG Wenlong,LIU Shuangshuang,et al. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. Coal Geology & Exploration,2021,49(1):65−80.

[17] 曹代勇,秦国红,张岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150−2155.

CAO Daiyong,QIN Guohong,ZHANG Yan,et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150−2155.

[18] BUTLER J,MARSH H,GOODARZI F. World coals:Genesis of the world’s major coalfields in relation to plate tectonics[J]. Fuel,1988,67(2):269−274.

[19] 万天丰. 中国大地构造学[M]. 北京:地质出版社,2011.

[20] 杨起,韩德馨. 中国煤田地质学(下册)[M]. 北京:煤炭工业出版社,1980.

[21] 马文璞. 区域构造解析:方法理论和中国板块构造[M]. 北京:地质出版社,1992.

[22] 任纪舜,陈廷愚,牛宝贵,等. 中国东部及邻区大陆岩石圈的构造演化与成矿[M]. 北京:科学出版社,1990.

[23] 任收麦,黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展,2002,17(1):113−120.

REN Shoumai,HUANG Baochun. Preliminary study on Post–Late Paleozoic Kinematics of the main blocks of the Paleo−Asian Ocean[J]. Progress in Geophysics,2002,17(1):113−120.

[24] DEWEY J F. Suture zone complexities:A review[J]. Tectonophysics,1977,40(1/2):53−67.

[25] 李宝芳,李桢,付泽明,等. 华北南部晚古生代陆表海的沉积充填、聚煤特征和构造演化[J]. 地球科学,1989,14(4):367−378.

LI Baofang,LI Zhen,FU Zeming,et al. The depositional filling,coal accumulation characteristics and tectonic evolution of the Late Paleozoic Epeiric Sea in the south of North China[J]. Earth Science,1989,14(4):367−378.

[26] 谭永杰. 鄂尔多斯盆地南缘构造变形及其演化[D]. 北京:中国矿业大学(北京),1992.

TAN Yongjie. Structural deformation and evolution of the southern margin of the Ordos Basin[D]. Beijing:China University of Mining and Technology (Beijing),1992.

[27] 李晶,王园,袁伟,等. 陕西典型矿区煤系关键金属元素富集特征及其成因机制[J]. 煤炭学报,2022,47(5):1808−1821.

LI Jing,WANG Yuan,YUAN Wei,et al. Enrichment characteristics and mechanism of critical metal elements enriched in coals from typical coalfields in Shaanxi Province[J]. Journal of China Coal Society,2022,47(5):1808−1821.

[28] 宁树正,黄少青,刘亢,等. 鄂尔多斯盆地南北缘煤中金属异常富集成因对比[J]. 煤炭学报,2022,47(5):1795−1807.

NING Shuzheng,HUANG Shaoqing,LIU Kang,et al. Comparison of genesis of abnormal enrichment of metals in coal between the northern and southern margins of Ordos Basin[J]. Journal of China Coal Society,2022,47(5):1795−1807.

[29] SEREDIN V V,DANILCHEVA J A. Coal–hosted Ge deposits of the Russian Far East[C]//In:Piestrzynski et al (eds). Mineral Deposits at Beginning of the 21st Century. Lisse:Swets & Zeitlinger Publishers,2001.

[30] DAI Shifeng,WANG Xibo,SEREDIN V V,et al. Petrology,mineralogy,and geochemistry of the Ge–rich coal from the Wulantuga Ge ore deposit,Inner Mongolia,China:New data and genetic implications[J]. International Journal of Coal Geology,2012,90/91:72−99.

[31] 胡瑞忠,毕献武,叶造军,等. 临沧锗矿床成因初探[J]. 矿物学报,1996,16(2):97−102.

HU Ruizhong,BI Xianwu,YE Zaojun,et al. The genesis of Lincang germanium deposit:A preliminary investigation[J]. Acta Mineralogica Sinica,1996,16(2):97−102.

[32] 黄克兴,夏玉成. 构造控煤概论[M]. 北京:煤炭工业出版社,1991.

[33] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局与构造控煤作用[M]. 北京:科学出版社,2017.

[34] DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164.

[35] FINKELMAN R B,BOSTICK N H,DULONG F T,et al. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County,Colorado[J]. International Journal of Coal Geology,1998,36(3/4):223−241.

[36] GOODARZI F. The effects of weathering and natural heating on trace elements of coal. In:Swaine D J,Goodarzi F (eds)[J]. Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publication,1995,5:76−92.

[37] 杨起,吴冲龙,汤达祯,等. 中国煤变质作用[M]. 北京:煤炭工业出版社,1996.

[38] SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal[M]. Hague:Kluwer Academic Publishers,1995.

[39] 张军营,任德贻,王运泉,等. 煤中有机态微量元素含量与煤级关系[J]. 煤田地质与勘探,2000,28(6):11−13.

ZHANG Junying,REN Deyi,WANG Yunquan,et al. Relationship between the organic affinity of trace elements and the rank of coal[J]. Coal Geology & Exploration,2000,28(6):11−13.

[40] 曹代勇,张守仁,穆宣社,等. 中国含煤岩系构造变形控制因素探讨[J]. 中国矿业大学学报,1999,28(1):25−28.

CAO Daiyong,ZHANG Shouren,MU Xuanshe,et al. Study on control factors of deformation of coal measures in China[J]. Journal of China University of Mining & Technology,1999,28(1):25−28.

[41] CAO Daiyong,WANG Anmin,NING Shuzheng,et al. Coalfield structure and structural controls on coal in China[J]. International Journal of Coal Science & Technology,2020,7(2):220−239.

[42] 朱日祥,朱光,李建威,等. 华北克拉通破坏[M]. 北京:科学出版社,2020.

[43] 许志琴,李思田,张建新,等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报,2011,27(1):1−22.

XU Zhiqin,LI Sitian,ZHANG Jianxin,et al. Paleo–Asian and Tethyan tectonic systems with docking the Tarim Block[J]. Acta Petrologica Sinica,2011,27(1):1−22.

[44] WEI Yingchun,HE Wenbo,QIN Guohong,et al. Mineralogy and geochemistry of the Lower Cretaceous coals in the Junde Mine,Hegang Coalfield,northeastern China[J]. Energies,2022,15(14):5078.

[45] 黄文辉,孙磊,马延英,等. 内蒙古自治区胜利煤田锗矿地质及分布规律[J]. 煤炭学报,2007,32(11):1147−1151.

HUANG Wenhui,SUN Lei,MA Yanying,et al. Distribution and geological feature of the coal−Ge deposit of Shengli Coalfield in Inner Mongolia of China[J]. Journal of China Coal Society,2007,32(11):1147−1151.

[46] 黄少青,张建强,霍超,等. 热液对五牧场矿区煤中锗富集影响的探讨[J]. 中国煤炭地质,2017,29(4):12−17.

HUANG Shaoqing,ZHANG Jianqiang,HUO Chao,et al. Discussion on germanium enrichment in coal impacted by hydrothermal solution in Wumuchang minefield[J]. Coal Geology of China,2017,29(4):12−17.

[47] 黄少青,张建强,张恒利. 东北赋煤区煤中锗元素分布特征及富集控制因素[J]. 煤田地质与勘探,2018,46(3):6−10.

HUANG Shaoqing,ZHANG Jianqiang,ZHANG Hengli. Distribution and controlling factors of enrichment of germanium in coal–bearing region of northeast China[J]. Coal Geology & Exploration,2018,46(3):6−10.

[48] 宁树正,黄少青,张莉,等. 中国北方不同成煤时代煤中金属矿点(床)分布及资源前景[J]. 煤田地质与勘探,2020,48(2):42−48.

NING Shuzheng,HUANG Shaoqing,ZHANG Li,et al. Distribution and resource prospect of metal ore spots (deposits) in coal of different coal–forming ages in northern China[J]. Coal Geology & Exploration,2020,48(2):42−48.

[49] 张复新,王立社. 内蒙古准格尔黑岱沟超大型煤型镓矿床的形成与物质来源[J]. 中国地质,2009,36(2):417−423.

ZHANG Fuxin,WANG Lishe. The formation and material sources of the superlarge Hada Gol Ga–bearing coal deposit in Jungar Banner,Inner Mongolia[J]. Geology in China,2009,36(2):417−423.

[50] QIN Guohong,CAO Daiyong,WEI Yingchun,et al. Mineralogy and geochemistry of the No.5–2 High–Sulfur Coal from the Dongpo Mine,Weibei Coalfield,Shaanxi,North China,with emphasis on anomalies of gallium and lithium[J]. Minerals,2019,9(7):402.

[51] WEI Yingchun,HE Wenbo,QIN Guohong,et al. Lithium enrichment in the No.21 Coal of the Hebi No.6 Mine,Anhe Coalfield,Henan Province,China[J]. Minerals,2020,10(6):521.

[52] LIU Zhifei,WEI Yingchun,NING Shuzheng,et al. The differences of element geochemical characteristics of the main coal seams in the Ningdong Coalfield,Ordos Basin[J]. Journal of Geochemical Exploration,2019,202:77−91.

[53] 刘晶晶,韩秋婵,赵书茂,等. 贵州西部晚二叠世煤中关键金属异常富集的物质来源[J]. 煤炭学报,2022,47(5):1782−1794.

LIU Jingjing,HAN Qiuchan,ZHAO Shumao,et al. The sources of abnormally enriched critical metals in the Late Permian coals of western Guizhou Province[J]. Journal of China Coal Society,2022,47(5):1782−1794.

[54] 王冉. 黔西地区煤中金赋存分布与富集地球化学机理研究[D]. 徐州:中国矿业大学,2011.

WANG Ran. Study on occurrence and distribution of Au in the coals and its enrichment mechanism in western Guizhou Province,China[D]. Xuzhou:China University of Mining and Technology,2011.

[55] DAI Shifeng,REN Deyi,TANG Yuegang,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province,China[J]. International Journal of Coal Geology,2005,61(1/2):119−137.

[56] 郑雪. 滇东晚二叠世煤中矿物质组成及其对区域地质演化的响应[D]. 北京:中国矿业大学(北京),2018.

ZHENG Xue. Mineral matter in Lopingian coals from eastern Yunnan Province and its response to the regional geological evolution[D]. Beijing:China University of Mining and Technology (Beijing),2018.

[57] 李宝庆,庄新国,宁树正,等. 稀土–锆(铪)–铌(钽)–镓的活化、迁移和富集机理:以务正道地区上二叠统吴家坪组煤系为例[J]. 煤炭学报,2022,47(5):1822−1839.

LI Baoqing,ZHUANG Xinguo,NING Shuzheng,et al. Mobilization,migration,and enrichment mechanism of rare earth elements–Zr(Hf)–Nb(Ta)–Ga:A case study of coal–bearing strata within Upper Permian Wujiaping Formation in Wuzhengdao region[J]. Journal of China Coal Society,2022,47(5):1822−1839.

[58] 吴艳艳,秦勇,易同生. 贵州凯里梁山组高硫煤中稀土元素的富集及其地质成因[J]. 地质学报,2010,84(2):280−285.

WU Yanyan,QIN Yong,YI Tongsheng. Enrichment of rare earth elements in high sulfur coal of Liangshan Formation from Kaili,Guizhou,China and geological origin[J]. Acta Geologica Sinica,2010,84(2):280−285.

[59] 宁树正,吴国强,邓小利,等. 中国煤中金属元素矿产资源[M]. 北京:科学出版社,2019.

[60] 曹泊,秦云虎,朱士飞,等. 广西上林合山组炭质泥岩中锂和稀土元素的成因及富集机制[J]. 煤炭学报,2022,47(5):1851−1864.

CAO Bo,QIN Yunhu,ZHU Shifei,et al. Origin and enrichment mechanism of lithium and rare earth elements in carbonaceous mudstone of Heshan Formation,Shanglin,Guangxi[J]. Journal of China Coal Society,2022,47(5):1851−1864.

[61] CAO Daiyong,ZHANG Pengfei,JIN Kuili,et al. Tectonic evolution and inversion of Turpan–Hami Basin,northwestern China[J]. Scientia Geologica Sinica,1997,6(4):407−412.

[62] SOBEL E R,DUMITRU A. Thrusting and exhumation around the margins of the Western Tarim Basin during the India–Asia Collision[J]. Journal of Geophysical Research,1997,102(B3):5043−5063.

[63] YAN G,WANG F B,SHI G R,et al. Palynological and stable isotopic study of palaeoenvironmental changes on the northeastern Tibetan Plateau in the last 30,000 years[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1999,153(1/4):147−159.

[64] 陈磊. 煤中镓元素的赋存特征与富集机理:以青海木里和新疆准东煤田为例[D]. 成都:成都理工大学,2019.

CHEN Lei. Occurrence characteristics and enrichment mechanism of gallium in coal:Taking Qinghai Muli and Xinjiang Zhundong coalfields as examples[D]. Chengdu:Chengdu University of Technology,2019.

[65] 刘双双,王文峰,王文龙,等. 伊犁盆地煤中关键金属的分布赋存特征[J]. 煤炭学报,2022,47(5):1761−1772.

LIU Shuangshuang,WANG Wenfeng,WANG Wenlong,et al. Distribution regularity and occurrence characteristics of critical metal elements in Yili coals[J]. Journal of China Coal Society,2022,47(5):1761−1772.

[66] SHAO Pei,WANG Wenfeng,CHEN Lei,et al. Distribution,occurrence,and enrichment of gallium in the Middle Jurassic coals of the Muli Coalfield,Qinghai,China[J]. Journal of Geochemical Exploration,2018,185:116−129.

[67] 邓军,王庆飞,陈福川,等. 再论三江特提斯复合成矿系统[J]. 地学前缘,2020,27(2):106−136.

DENG Jun,WANG Qingfei,CHEN Fuchuan,et al. Further discussion on the Sanjiang Tethyan composite metallogenic system[J]. Earth Science Frontiers,2020,27(2):106−136.

[68] 乔军伟,吴国强,宋时雨,等. 青藏高原煤炭资源赋存规律与潜力评价[M]. 北京:科学出版社,2019.

[69] 代俊峰,李增华,许德如,等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学,2021,45(5):963−982.

DAI Junfeng,LI Zenghua,XU Deru,et al. Coal–hosted critical metal deposits:A review[J]. Geotectonica et Metallogenia,2021,45(5):963−982.

[70] 秦身钧,徐飞,崔莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38.

QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal–related resources[J]. Coal Science and Technology,2022,50(3):1−38.

[71] 周贤青,秦勇,陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探,2019,47(4):45−53.

ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological−geochemical research of coal−type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45−53.

[72] DU Gang,ZHUANG Xinguo,QUEROL X,et al. Ge distribution in the Wulantuga high−germanium coal deposit in the Shengli Coalfield,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2009,78(1):16−26.

[73] 王婷灏,黄文辉,闫德宇,等. 中国大型煤–锗矿床成矿模式研究进展:以云南临沧和内蒙古乌兰图嘎煤–锗矿床为例[J]. 地学前缘,2016,23(3):113−123.

WANG Tinghao,HUANG Wenhui,YAN Deyu,et al. Progress of research on mineralization mode of large coal–Ge deposits in China:Coal–Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunnan[J]. Earth Science Frontiers,2016,23(3):113−123.

[74] 王文峰,秦勇,刘新花,等. 内蒙古准格尔煤田煤中镓的分布赋存与富集成因[J]. 中国科学:地球科学,2011,41(2):181−196.

WANG Wenfeng,QIN Yong,LIU Xinhua,et al. Distribution,occurrence and enrichment causes of gallium in coals from the Jungar Coalfield,Inner Mongolia[J]. Scientia Sinica (Terrae),2011,41(2):181−196.

[75] DAI Shifeng,REN Deyi,CHOU C L,et al. Mineralogy and geochemistry of the No.6 Coal (Pennsylvanian) in the Junger Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2006,66(4):253−270.

[76] DAI Shifeng,LI Tianjiao,JIANG Yaofa,et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine,Daqingshan Coalfield,Inner Mongolia,China:Implications of sediment–source region and acid hydrothermal solutions[J]. International Journal of Coal Geology,2015,137:92−110.

[77] SUN Yuzhuang,ZHAO Cunliang,QIN Shenjun,et al. Occurrence of some valuable elements in the unique ‘high–aluminium coals’ from the Jungar Coalfield,China[J]. Ore Geology Reviews,2016,72:659−668.

[78] QIN Guohong,CAO Daiyong,WEI Yingchun,et al. Geochemical characteristics of the Permian coals in the Junger–Hebaopian Mining District,northeastern Ordos Basin,China:Key role of paleopeat−forming environments in Ga−Li−REY enrichment[J]. Journal of Geochemical Exploration,2020,213:106494.

[79] 秦国红,刘亢,徐浩,等. 鄂尔多斯盆地西缘煤中微量元素共生组合特征[J]. 中国煤炭地质,2015,27(7):1−6.

QIN Guohong,LIU Kang,XU Hao,et al. Paragenetic association features of trace elements in coals in western margin of Ordos Basin[J]. Coal Geology of China,2015,27(7):1−6.

[80] 秦国红,邓丽君,刘亢,等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,2016,44(6):8−14.

QIN Guohong,DENG Lijun,LIU Kang,et al. Characteristic of rare earth elements in coal in western margin of Ordos Basin[J]. Coal Geology & Exploration,2016,44(6):8−14.

[81] DAI Shifeng,YANG Jianye,WARD C R,et al. Geochemical and mineralogical evidence for a coal–hosted uranium deposit in the Yili Basin,Xinjiang,northwestern China[J]. Ore Geology Reviews,2015,70:1−30.

[82] 魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473−1487.

WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No.2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473−1487.

[83] 田立强,范士彦,王红梅,等. 济宁许厂煤矿伴生分散元素铼的富集成矿探析[J]. 山东国土资源,2016,32(2):35−38.

TIAN Liqiang,FAN Shiyan,WANG Hongmei,et al. Study on enrichment of scattered rhenium in Xuchang Coal Mine in Jining City[J]. Shandong Land and Resources,2016,32(2):35−38.

[84] 袁铎恩,边家辉,刘紫璇,等. 华北板块南缘早二叠世煤中微量元素赋存特征及主控机制[J/OL]. 地质科技通报,2022:1–12[2022-11-24]. https: //kns.cnki.net/kcms/detail/42.1904.p.20220505.1042.005.html.

YUAN Duo’en,BIAN Jiahui,LIU Zixuan,et al. Occurrence characteristics and main control mechanism of trace elements in Early Permian coal on the southern margin of North China Plate[J/OL]. Bulletin of Geological Science and Technology,2022:1–12[2022-11-24]. https: //kns.cnki.net/kcms/detail/42.1904.p.20220505.1042.005.html.

[85] 庄新国,龚家强,曾荣树,等. 赣东北晚二叠和晚三叠煤的微量元素对比研究[J]. 中国煤田地质,2001,13(3):15−17.

ZHUANG Xinguo,GONG Jiaqiang,ZENG Rongshu,et al. Contrast research on trace elements of Late Permian and Late Triassic coals in north–eastern Jiangxi Province[J]. Coal Geology of China,2001,13(3):15−17.

[86] 李思田. 沉积盆地动力学研究的进展、发展趋向与面临的挑战[J]. 地学前缘,2015,22(1):1−8.

LI Sitian. Advancement,trend and new challenges in basin geodynamics[J]. Earth Science Frontiers,2015,22(1):1−8.

[87] SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Further information of the associated Li deposits in the No.6 coal seam at Jungar Coalfield,Inner Mongolia,northern China[J]. Acta Geologica Sinica (English Edition),2013,87(4):1097−1108.

[88] 王金喜. 宁武盆地石炭二叠系煤中锂富集的沉积控制[D]. 徐州:中国矿业大学,2019.

WANG Jinxi. Sedimentary control of lithium enrichment in Permo−Carboniferous coals from Ningwu Basin,Shanxi,China[D]. Xuzhou:China University of Mining and Technology,2019.

[89] 代世峰,任德贻,李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报,2006,51(2):177−185.

[90] 黄少青,刘亢,宁树正,等. 河东煤田煤中金属富集规律及成因机制[J]. 中国煤炭地质,2021,33(12):1−5.

HUANG Shaoqing,LIU Kang,NING Shuzheng,et al. Coal metals enrichment pattern and genetic mechanism in Hedong Coalfield[J]. Coal Geology of China,2021,33(12):1−5.

[91] 刘池洋,赵红格,王锋,等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报,2005,79(6):737−747.

LIU Chiyang,ZHAO Hongge,WANG Feng,et al. Attributes of the Mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica,2005,79(6):737−747.

[92] 白斌,杨文敬,周立发,等. 鄂尔多斯盆地西缘山西组沉积物源及源区大地构造属性分析[J]. 煤田地质与勘探,2007,35(4):8−11.

BAI Bin,YANG Wenjing,ZHOU Lifa,et al. Sediment provenance analysis and tectonic setting discrimination of Shanxi Formation on west edge of Ordos Basin[J]. Coal Geology & Exploration,2007,35(4):8−11.

[93] 张宏辉,吴亮,李鸿,等. 滇东北乌蒙山地区峨眉地幔柱活动与火山–沉积盆地的响应关系[J]. 现代地质,2022,36(1):225−243.

ZHANG Honghui,WU Liang,LI Hong,et al. Relation between the Emeishan mantle plume activity and Wumengshan volcanic–sedimentary basin in northeastern Yunnan[J]. Geoscience,2022,36(1):225−243.

[94] DAI Shifeng,CHEKRYZHOV I Y,SEREDIN V V,et al. Metalliferous coal deposits in East Asia (Primorye of Russia and South China):A review of geodynamic controls and styles of mineralization[J]. Gondwana Research,2016,29(1):60−82.

[95] LI Baoqing,ZHUANG Xinguo,LI Jing,et al. Enrichment and distribution of elements in the Late Permian coals from the Zhina Coalfield,Guizhou Province,southwest China[J]. International Journal of Coal Geology,2017,171:111−129.

[96] DAI Shifeng,ZHOU Yiping,ZHANG Mingquan,et al. A new type of Nb(Ta)–Zr(Hf)–REE–Ga polymetallic deposit in the Late Permian coal–bearing strata,eastern Yunnan,southwestern China:Possible economic significance and genetic implications[J]. International Journal of Coal Geology,2010,83(1):55−63.

[97] 王小川,张玉成,潘润群,等. 黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M]. 重庆:重庆大学出版社,1996.

[98] 凌坤跃,温汉捷,张起钻,等. 广西平果上二叠统合山组关键金属锂和铌的超常富集与成因[J]. 中国科学:地球科学,2021,51(6):853−873.

LING Kunyue,WEN Hanjie,ZHANG Qizuan,et al. Super–enrichment of lithium and niobium in the Upper Permian Heshan Formation in Pingguo,Guangxi,China[J]. Scientia Sinica (Terrae),2021,51(6):853−873.

[99] 代世峰,任德贻,周义平,等. 煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因[J]. 科学通报,2008,53(24):3120−3126.

DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Combined origin of synsedimentary volcanic ash enriched with trace elements and minerals in coal and submarine jets[J]. Chinese Science Bulletin,2008,53(24):3120−3126.

[100] IBARRA J V,ORDUNA P. Variation of the metal complexing ability of humic acids with coal rank[J]. Fuel,1986,65(7):1012−1016.

[101] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.

[102] 刘金钟,许云秋. 次火山热变质煤中Ge、Ga、As、S的分布特征[J]. 煤田地质与勘探,1992,20(5):27−32.

LIU Jinzhong,XU Yunqiu. Distribution of Ge,Ga,As,S in the coal metamorphized by heat of sub–volcanics[J]. Coal Geology & Exploration,1992,20(5):27−32.

[103] HUGGINS F E,HUFFMAN G P. How do lithophile elements occur in organic association in bituminous coals?[J]. International Journal of Coal Geology,2004,58(3):193−204.

[104] DAI Shifeng,ZOU Jianhua,JIANG Yaofa,et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine,Daqingshan Coalfield,Inner Mongolia,China:Modes of occurrence and origin of diaspore,gorceixite,and ammonian illite[J]. International Journal of Coal Geology,2012,94:250−270.

[105] ZHOU Yiping,REN Youliang. Distribution of arsenic in coals of Yunnan Province,China,and its controlling factors[J]. International Journal of Coal Geology,1992,20(1/2):85−98.

[106] DIEHL S F,GOLDHABER M B,HATCH J R. Modes of occurrence of mercury and other trace elements in coals from the Warrior Field,Black Warrior Basin,northwestern Alabama[J]. International Journal of Coal Geology,2004,59(3/4):193−208.

[107] 赵蕾,王西勃,代世峰. 煤系中的锂矿产:赋存分布、成矿与资源潜力[J]. 煤炭学报,2022,47(5):1750−1760.

ZHAO Lei,WANG Xibo,DAI Shifeng. Lithium resources in coal−bearing strata:Occurrence,mineralization,and resource potential[J]. Journal of China Coal Society,2022,47(5):1750−1760.

[108] KERRICH R,FYFE W S,GERMAN B E,et al. Local modification of rock chemistry by deformation[J]. Contributions to Mineralogy and Petrology,1977,65(2):183−190.

[109] 钟增球,游振东. 剪切带的成分变异及体积亏损:以河台剪切带为例[J]. 科学通报,1995,40(10):913−916.

ZHONG Zengqiu,YOU Zhendong. Compositional variation and volume depletion of shear zones:Taking the Hetai shear zone as an example[J]. Chinese Science Bulletin,1995,40(10):913−916.

[110] 周建波,胡克,洪景鹏. 稀土元素在韧性剪切带体积亏损研究中的应用:以胶南造山带构造岩为例[J]. 地质论评,1999,45(3):241−246.

ZHOU Jianbo,HU Ke,HONG Jingpeng. Application of REE anomaly in volume deficiency of a Ductile shear zone:An example from the Ductile shear zone on the northern margin of the Jiaonan Orogenic Belt[J]. Geological Review,1999,45(3):241−246.

[111] 孙岩,沈修志,刘寿和. 断裂构造地球化学特征的初步探讨[J]. 大地构造与成矿学,1984,8(1):29−44.

SUN Yan,SHEN Xiuzhi,LIU Shouhe. Preliminary discussion on geochemical features of fault structures[J]. Geotectonica et Metallogenia,1984,8(1):29−44.

[112] 姜波. 煤田推覆构造地球化学特征初探[J]. 煤田地质与勘探,1992,20(1):22−26.

JIANG Bo. Research on characteristics of overthrust geochemistry of coalfields[J]. Coal Geology & Exploration,1992,20(1):22−26.

[113] 王嘉荫. 应力矿物概论[M]. 北京:地质出版社,1978.

[114] SUN Yan,SHEN Xiuzhi,LIU Shouhe. Preliminary analysis of some chemically determined data from the compressive fault zone at Dayu,Jiangxi Province[J]. Geochemistry,1984,3(3):285−294.

[115] 孙岩,舒良树,李本亮,等. 浅层断裂韧滑流变的实验分析[J]. 中国科学(D辑),2000,30(5):519−525.

SUN Yan,SHU Liangshu,LI Benliang,et al. Experimental analysis of ductile–slip rheology of shallow fracture[J]. Science in China (Series D),2000,30(5):519−525.

[116] 曹代勇,李小明,张守仁. 构造应力对煤化作用的影响:应力降解机制与应力缩聚机制[J]. 中国科学(D辑),2006,36(1):59−68.

CAO Daiyong,LI Xiaoming,ZHANG Shouren. Influence of tectonic stress on coalification:Stress degradation mechanism and stress polycondensation mechanism[J]. Science in China (Series D),2006,36(1):59−68.

[117] 刘和武,姜波. 煤构造地球化学研究[M]. 徐州:中国矿业大学出版社,2021.

[118] 曹代勇,李小明,占文锋,等. 大别山北麓杨山煤系高煤级煤的变形变质作用研究[M]. 北京:地质出版社,2012.

[119] LI Yunbo,JIANG Bo,QU Zhenghui. Controls on migration and aggregation for tectonically sensitive elements in tectonically deformed coal:An example from the Haizi Mine,Huaibei Coalfield,China[J]. Scientia Sinica (Terrae),2014,57(6):1180−1191.

[120] 程国玺,姜波,刘和平,等. 构造煤变形过程中矿物及元素响应:以朱仙庄矿8 号煤为例[J]. 煤炭学报,2017,42(4):985−995.

CHENG Guoxi,JIANG Bo,LIU Heping,et al. Response of minerals and elements during coal deformation:Taking Zhuxianzhuang Mine No.8 coal as an example[J]. Journal of China Coal Society,2017,42(4):985−995.

[121] 曹代勇,郭爱军,陈利敏,等. 煤田构造演化新解:从成煤盆地到赋煤构造单元[J]. 煤田地质与勘探,2016,44(1):1−8.

CAO Daiyong,GUO Aijun,CHEN Limin,et al. New interpretation of coalfield tectonic evolution:From coal–forming basins to coal–bearing tectonic units[J]. Coal Geology & Exploration,2016,44(1):1−8.

[122] 吴根耀,马力. “盆”“山”耦合和脱耦:进展,现状和努力方向[J]. 大地构造与成矿学,2004,28(1):81−97.

WU Genyao,MA Li. Orogeny and coupled/decoupled basin development:A review[J]. Geotectonica et Metallogenia,2004,28(1):81−97.

[123] 朱红涛,朱筱敏,刘强虎,等. 层序地层学与源–汇系统理论内在关联性与差异性[J]. 石油与天然气地质,2022,43(4):763−776.

ZHU Hongtao,ZHU Xiaomin,LIU Qianghu,et al. Sequence stratigraphy and source–to–sink system:Connections and distinctions[J]. Oil & Gas Geology,2022,43(4):763−776.

[124] 操应长,徐琦松,王健. 沉积盆地“源–汇”系统研究进展[J]. 地学前缘,2018,25(4):116−131.

CAO Yingchang,XU Qisong,WANG Jian. Progress in “Source–to–Sink”system research[J]. Earth Science Frontiers,2018,25(4):116−131.

[125] 周安朝,刘东娜,马美玲. 大青山煤田砂岩特征及其构造意义[J]. 煤炭学报,2010,35(6):969−974.

ZHOU Anchao,LIU Dongna,MA Meiling. The characteristics and the structural significance of the sandstone in Daqingshan Coalfield[J]. Journal of China Coal Society,2010,35(6):969−974.

[126] 闻竹,付晓飞,吕延防. 断层封闭性评价及断圈含油气预测[J]. 中南大学学报(自然科学版),2016,47(4):1209−1218.

WEN Zhu,FU Xiaofei,LYU Yanfang. Evaluation of fault seal and hydrocarbon potential prediction of fault traps[J]. Journal of Central South University (Science and Technology),2016,47(4):1209−1218.

[127] DAI Shifeng,REN Deyi. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng–Handan Coalfield,Hebei,China[J]. Energy & Fuels,2007,21(3):1663−1673.

[128] WANG Xibo,JIANG Yaofa,ZHOU Guoqing,et al. Behavior of minerals and trace elements during natural coking:A case study of an intruded bituminous coal in the Shuoli Mine,Anhui Province,China[J]. Energy & Fuels,2015,29(7):4100−4113.

[129] CAO Yunxing,DAVIS A,LIU Ruixun,et al. The influence of tectonic deformation on some geochemical properties of coals:A possible indicator of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69−79.

[130] 张玉贵,张子敏,曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报,2007,32(3):281−284.

ZHANG Yugui,ZHANG Zimin,CAO Yunxing. Deformed−coal structure and control to coal−gas outburst[J]. Journal of China Coal Society,2007,32(3):281−284.

[131] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350−359.

[132] JU Yiwen,LUXBACHER K,LI Xiaoshi,et al. Micro–structural evolution and their effects on physical properties in different types of tectonically deformed coals[J]. International Journal of Coal Science & Technology,2014,1(3):364−375.

[133] 姜波,李明,宋昱,等. 构造煤及其瓦斯地质意义[M]. 北京:科学出版社,2020.

[134] 吕古贤,张宝林,胡宝群,等. 构造物理化学的研究与进展[J/OL]. 地学前缘,2021:1–15 [2022-11-24]. doi.org/10.13745/j.esf.sf.2021.11.36.

LYU Guxian,ZHANG Baolin,HU Baoqun,et al. Research status and progress of tectonic physicochemistry[J/OL]. Earth Science Frontiers,2021:1–15 [2022-11-24]. doi.org/10.13745/j.esf.sf.2021.11.36.

[135] 李春辉,宋党育,宋播艺,等. 豫西裴沟矿二叠系构造煤中稀土元素分布与赋存特征[J]. 地球化学,2017,46(4):345−357.

LI Chunhui,SONG Dangyu,SONG Boyi,et al. Distribution and occurrence of REE in the Permian tectonically deformed coals from the Peigou Mine,western Henan Province[J]. Geochimica,2017,46(4):345−357.

[136] 曹代勇,刘志飞,王安民,等. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘,2022,29(1):439−448.

CAO Daiyong,LIU Zhifei,WANG Anmin,et al. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers,2022,29(1):439−448.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.