Coal Geology & Exploration
Abstract
Simulation experiments on hydraulic fracturing of the coal seam in the laboratory are an effective method to study the mechanism of fracturing and enhancing permeability of coal-rock mass by hydraulic fracturing in coal mines. However, the technology in-situ sampling for large-size coal mass is immature, and the existing large-size coal samples are mostly taken from the stress-relaxation area, which can be further damaged in the transportation and preparation processes, causing large dispersion in test results. Therefore, The use of coal-like materials is a viable option to replace large-size raw coal for hydraulic fracturing simulation experiments. The mechanical properties of coal-like specimens are the most important factor affecting the effectiveness of hydraulic fracturing. In this paper, in order to accurately characterize “the basic mechanical properties of coal-like materials”, coal powder, cement, gypsum, and sand are used to make coal-like samples with seven ratios for examining the coupling response law of ultrasonic and mechanical properties. The experiments results include: The ultrasonic wave velocity (P-and S-waves) and strength (uniaxial compressive and tensile strength) of coal-like samples increase with increasing density and decrease with increasing porosity. The effect of similar materials on ultrasonic wave velocity, strength, and density increments, cement > sand > gypsum, with the opposite porosity. Cement and gypsum play a major role in regulating the strength and deformation characteristics of coal-like samples, respectively. The strength of coal-like samples can be predicted in advance by measuring ultrasonic P-wave velocity based on the quadratic polynomial mathematical model between ultrasonic P-wave velocity and strength. The mechanical properties of the coal-like material can be adjusted in a wide range. Various properties of coal-like samples can be adjusted to simulate coal-rock mass accurately by changing the ratio of similar materials, and the sample can be made simply. This study provides a basis for a similar design of mechanical properties of coal-like materials for hydraulic fracturing simulation, which can promote the development of mine gas prevention technology and has high application value.
Keywords
coal-like material, mechanical properties, hydraulic fracturing, ultrasonic wave velocity, mine gas prevention and control
DOI
10.12363/issn.1001-1986.22.04.0272
Recommended Citation
ZHAI Cheng, ZHENG Yangfeng, YU Xu,
et al.
(2022)
"Experimental study on the mechanical properties of coal-like materials for hydraulic fracturing simulation,"
Coal Geology & Exploration: Vol. 50:
Iss.
8, Article 3.
DOI: 10.12363/issn.1001-1986.22.04.0272
Available at:
https://cge.researchcommons.org/journal/vol50/iss8/3
Reference
[1] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
[2] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
[3] 桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388−403. SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388−403.
[4] 倪冠华. 脉动压裂过程中瓦斯微观动力学特性及液相滞留机制研究[D]. 徐州:中国矿业大学,2015.
NI Guanhua. Microscopic kinetics characteristics of methane under pulsating hydraulic fracturing and mechanism of liquid retention effect[D]. Xuzhou:China University of Mining and Technology,2015.
[5] 王伟,程远平,袁亮,等. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报,2016,41(1):138−148. WANG Wei,CHENG Yuanping,YUAN Liang,et al. Floor fracture evolution and relief gas drainage timeliness in deeper underground short–distance upper protective coal seam extraction[J]. Journal of China Coal Society,2016,41(1):138−148.
[6] 许江,曹偈,李波波,等. 煤岩渗透率对孔隙压力变化响应规律的试验研究[J]. 岩石力学与工程学报,2013,32(2):225−230. XU Jiang,CAO Jie,LI Bobo,et al. Experimental research on response law of permeability of coal to pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(2):225−230.
[7] 许江,李波波,周婷,等. 加卸载条件下煤岩变形特性与渗透特征的试验研究[J]. 煤炭学报,2012,37(9):1493−1498. XU Jiang,LI Bobo,ZHOU Ting,et al. Experimental study of coal deformation and permeability characteristics under loading–unloading conditions[J]. Journal of China Coal Society,2012,37(9):1493−1498.
[8] 尹光志,李文璞,李铭辉,等. 加卸载条件下原煤渗透率与有效应力的规律[J]. 煤炭学报,2014,39(8):1497−1503. YIN Guangzhi,LI Wenpu,LI Minghui,et al. Permeability properties and effective stress of raw coal under loading–unloading conditions[J]. Journal of China Coal Society,2014,39(8):1497−1503.
[9] 李全贵,邓羿泽,胡千庭,等. 煤层水力压裂应力与裂隙演化的细观规律[J]. 煤田地质与勘探,2022,50(6):32−40. LI Quangui,DENG Yize,HU Qianting,et al. Mesoscopic law of stress and fracture evolution of coal seams hydraulic fracturing[J]. Coal Geology & Exploration,2022,50(6):32−40.
[10] 郭超奇,赵继展,李小建,等. 中硬低渗煤层定向长钻孔水力压裂瓦斯高效抽采技术与应用[J]. 煤田地质与勘探,2020,48(6):103−108. GUO Chaoqi,ZHAO Jizhan,LI Xiaojian,et al. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. Coal Geology & Exploration,2020,48(6):103−108.
[11] CHEN Jiangzhan,LI Xibing,CAO Han. Experimental investigation of coal–like materials for hydraulic fracturing based on fluid–solid interaction[J]. Journal of Natural Gas Science and Engineering,2019,69:102928.
[12] BEAMISH B B,CROSDALE P J. Instantaneous outbursts in underground coal mines:An overview and association with coal type[J]. International Journal of Coal Geology,1998,35(1/4):27−55.
[13] ZHAI Cheng,XU Jizhao,LIU Shimin,et al. Fracturing mechanism of coal–like rock specimens under the effect of non–explosive expansion[J]. International Journal of Rock Mechanics and Mining Sciences,2018,103:145−154.
[14] HUANG Bingxiang,LI Pengfeng. Experimental investigation on the basic law of the fracture spatial morphology for water pressure blasting in a drillhole under true triaxial stress[J]. Rock Mechanics and Rock Engineering,2015,48(4):1699−1709.
[15] 翟成,李贤忠,李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报,2011,36(12):1996−2001. ZHAI Cheng,LI Xianzhong,LI Quangui. Research and application of coal seam pulse hydraulic fracturing technology[J]. Journal of China Coal Society,2011,36(12):1996−2001.
[16] 李贤忠,林柏泉,翟成,等. 单一低透煤层脉动水力压裂脉动波破煤岩机理[J]. 煤炭学报,2013,38(6):918−923. LI Xianzhong,LIN Baiquan,ZHAI Cheng,et al. The mechanism of breaking coal and rock by pulsating pressure wave in single low permeability seam[J]. Journal of China Coal Society,2013,38(6):918−923.
[17] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究[J]. 煤炭学报,2010,35(10):1765−1766. HUANG Bingxiang. Research on theory and application of hydraulic fracture weakening for coal–rock mass[J]. Journal of China Coal Society,2010,35(10):1765−1766.
[18] HU Qianting,ZHANG Shutong,WEN Guangcai,et al. Coal–like material for coal and gas outburst simulation tests[J]. International Journal of Rock Mechanics & Mining Sciences,2015,74:151−156.
[19] WANG Gang,LI Wenxin,WANG Pengfei,et al. Deformation and gas flow characteristics of coal–like materials under triaxial stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:72−80.
[20] 秦雷. 液氮循环致裂煤体孔隙结构演化特征及增透机制研究[D]. 徐州:中国矿业大学,2018.
QIN Lei. Pore evolution after fracturing with cyclic liquid nitrogen and the mechanism of permeability enhancing[D]. Xuzhou:China University of Mining and Technology,2018.
[21] LI Quangui,LIN Baiquan,ZHAI Cheng. The effect of pulse frequency on the fracture extension during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering,2014,21:296−303.
[22] 陆沛青. 径向井–脉动水力压裂对煤层应力扰动效果的影响规律研究[D]. 北京:中国石油大学(北京),2016.
LU Peiqing. Research on stress disturbance effect of radial lateral pulsating hydraulic fracturing in coal seams[D]. Beijing:China University of Petroleum(Beijing),2016.
[23] 李树刚,别创峰,赵鹏翔,等. 新型“固–气”耦合相似材料特性影响因素研究[J]. 采矿与安全工程学报,2017,34(5):981−986. LI Shugang,BIE Chuangfeng,ZHAO Pengxiang,et al. Study on influence factors of new solid−gas coupling simulation material[J]. Journal of Mining & Safety Engineering,2017,34(5):981−986.
[24] ZHENG Yangfeng,ZHAI Cheng,SUN Yong,et al. Experimental study on the effect of coal particle size on the mechanics,pore structure,and permeability of coal–like materials for low–rank coalbed methane reservoir simulation[J]. Energy & Fuels,2021,35(21):17566−17579.
[25] 苏伟,冷伍明,雷金山,等. 岩体相似材料试验研究[J]. 土工基础,2008,22(5):73−75. SU Wei,LENG Wuming,LEI Jinshan,et al. Test study of similar material in rock mass[J]. Soil Engineering and Foundation,2008,22(5):73−75.
[26] 李宝富,任永康,齐利伟,等. 煤岩体的低强度相似材料正交配比试验研究[J]. 煤炭工程,2011(4):93−95. LI Baofu,REN Yongkang,QI Liwei,et al. Study on orthogonal mixing rate experiment with low strength similar material of coal and rock mass[J]. Coal Engineering,2011(4):93−95.
[27] 国际岩石力学学会实验室和现场试验标准委员会. 岩石力学试验建议方法[M]. 北京:煤炭工业出版社,1982.
[28] KAHRAMAN S. The correlations between the saturated and dry P–wave velocity of rocks[J]. Ultrasonics,2007,46(4):341−348.
[29] SAFFET Y. P–wave velocity test for assessment of geotechnical properties of some rock materials[J]. Bulletin of Materials Science,2011,34(4):947−953.
[30] XU Jizhao,ZHAI Cheng,RANJITH P G,et al. Petrological and ultrasonic velocity changes of coals caused by thermal cycling of liquid carbon dioxide in coalbed methane recovery[J]. Fuel,2019,249:15−26.
[31] KHANDELWAL M. Correlating P−wave velocity with the physico−mechanical properties of different rocks[J]. Pure and Applied Geophysics,2013,170:507−514.
[32] AYDIN A. Upgraded ISRM suggested method for determining sound velocity by ultrasonic pulse transmission technique[J]. Rock Mechanics and Rock Engineering,2014,47:255−259.
[33] KARAMAN K,KAYA A,KESIMAL A. Effect of the specimen length on ultrasonic P–wave velocity in some volcanic rocks and limestones[J]. Journal of African Earth Sciences,2015,112:142−149.
[34] GLADWIN M T. Ultrasonic stress monitoring in underground mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1982,19(5):221−228.
[35] 国家能源局. 岩样声波特性的实验室测量规范:SY/T 6351—2012[S]. 北京:中国标准出版社,2012.
[36] 刘波,张功,李守定,等. 砂质泥岩在低温劈裂试验中的声发射研究[J]. 岩石力学与工程学报,2016,35(增刊1):2702−2709. LIU Bo,ZHANG Gong,LI Shouding,et al. Acoustic emission study on frozen sandy mudstone in Brazilian splitting test[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup.1):2702−2709.
[37] 肖福坤,刘刚,秦涛,等. 拉–压–剪应力下细砂岩和粗砂岩破裂过程声发射特性研究[J]. 岩石力学与工程学报,2016,35(增刊2):3458−3472. XIAO Fukun,LIU Gang,QIN Tao,et al. Acoustic emission (AE) characteristics of fine sandstone and coarse sandstone fracture process under tension−compression−shear stress[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup.2):3458−3472.
[38] 苏海健,靖洪文,赵洪辉,等. 高温处理后红砂岩抗拉强度及其尺寸效应研究[J]. 岩石力学与工程学报,2015,34(增刊1):2879−2887. SU Haijian,JING Hongwen,ZHAO Honghui,et al. Study on tensile strength and size effect of red sandstone after high temperature treatment[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):2879−2887.
[39] 蔡美峰,何满潮,刘东燕. 岩石力学与工程[M]. 北京:科学出版社,2002.
[40] 何鹏,刘长武,王琛,等. 沉积岩单轴抗压强度与弹性模量关系研究[J]. 四川大学学报(工程科学版),2011,43(4):7−12. HE Peng,LIU Changwu,WANG Chen,et al. Correlation analysis of uniaxial compressive strength and elastic modulus of sedimentary rocks[J]. Journal of Sichuan University(Engineering Science Edition),2011,43(4):7−12.
[41] KAHRAMAN S,YEKEN T. Determination of physical properties of carbonate rocks from P–wave velocity[J]. Bulletin of Engineering Geology and the Environment,2008,67(2):277−281.
[42] KURTULUS C,BOZKURT A,ENDES H. Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey[J]. Pure and Applied Geophysics,2012,169:1205−1215.
[43] AZIMIAN A,AJALLOEIAN R. Empirical correlation of physical and mechanical properties of marly rocks with P–wave velocity[J]. Arabian Journal of Geosciences,2015,8:2069−2079.
[44] REZAEI M,DAVOODI P K,NAJMODDINI I. Studying the correlation of rock properties with P–wave velocity index in dry and saturated conditions[J]. Journal of Applied Geophysics,2019,169:49−57.
[45] 徐吉钊. 液态CO2循环冲击致裂煤体孔隙结构及损伤力学特征研究[D]. 徐州:中国矿业大学,2020.
XU Jizhao. Study of pore evolution and damage mechanical characteristics of coals under the effect of liquid CO2 cyclic shock fracturing[D]. Xuzhou:China University of Mining and Technology,2020.
[46] QIN Lei,MA Chao,LI Shugang,et al. Liquid nitrogen’s effect on the mechanical properties of dried and water–saturated frozen coal[J]. Energy & Fuels,2022,36(4):1894−1903.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons