Coal Geology & Exploration
Abstract
In order to improve the ability to recognize and interpret the abnormal response boundary in the transient electromagnetic inversion imaging results of boreholes in coal mines, and to complete geophysical interpretation such as an accurate description of hidden water disasters in front of the heading face and a fine analysis of hidden disaster-causing factors, this paper proposes the application of apply clustering method of unsupervised machine learning to analyze the borehole transient electromagnetic processing results. According to the numerical distribution characteristics of resistivity and the characteristics of the two clustering methods, the K-Means clustering algorithm is selected to aggregate and classify the resistivity imaging results. In the process of clustering calculation, the maximum distance principle is used to determine the initial centroid of the cluster, the Euclidean distance is selected as the distance calculation method, and the elbow method based on the sum of square errors is used to determine the number of clusters. In view of the hidden water disaster in the heading face, three-dimensional numerical simulation and underground field application examples are used to verify the practicability and effectiveness of this method. The results show that the method can automatically identify the optimal number of clusters and realize accurate clustering of resistivity. The clustering imaging results can improve the smooth transition problem of the original imaging model, highlight the boundary of abnormal response, clearly display the shape and position of abnormal response, and help to identify and classify hidden disaster-causing water bodies in the inversion results of borehole transient electromagnetic advanced detection.
Keywords
borehole transient electromagnetic method, K-Means clustering, boundary of abnormal body, sum of square errors, elbow method, advanced detection
DOI
10.12363/issn.1001-1986.21.12.0839
Recommended Citation
FAN Tao, LI Ping, ZHANG Youzhen,
et al.
(2022)
"Imaging method of borehole transient electromagnetic anomaly response boundary in coal mines based on clustering,"
Coal Geology & Exploration: Vol. 50:
Iss.
7, Article 9.
DOI: 10.12363/issn.1001-1986.21.12.0839
Available at:
https://cge.researchcommons.org/journal/vol50/iss7/9
Reference
[1] 国家矿山安全监察局. 2020年全国煤矿事故分析报告[R]. 2021.
[2] 吴金刚,毛俊睿,柴沛. 2000—2017年我国煤矿重特大水灾事故规律分析[J]. 煤矿安全,2019,50(10):239−242. WU Jingang,MAO Junrui,CHAI Pei. Law of major & particular major coal mine flooding accidents in China from 2000 to 2017[J]. Safety in Coal Mines,2019,50(10):239−242.
[3] 薛国强,李海,陈卫营,等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报,2021,46(1):77−85. XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water–bearing bodies in coal mines[J]. Journal of China Coal Society,2021,46(1):77−85.
[4] 刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19−25. LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19−25.
[5] 韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635−639. HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water–conducting or water–bearing geological structures a long same layer[J]. Journal of China Coal Society,2010,35(4):635−639.
[6] 时志浩,程久龙,董毅,等. 锚网支护对矿井瞬变电磁响应的影响与校正[J]. 煤矿安全,2019,50(4):108−111. SHI Zhihao,CHENG Jiulong,DONG Yi,et al. Influence of bolt–net support on mine transient electromagnetic response and its correction[J]. Safety in Coal Mines,2019,50(4):108−111.
[7] 陈健强,李宏杰,廉玉广,等. 矿井瞬变电磁井下大型铁器干扰响应特征[J]. 煤矿安全,2018,49(10):139−142. CHEN Jianqiang,LI Hongjie,LIAN Yuguang,et al. Transient electromagnetic response characteristics of large iron interference in mine[J]. Safety in Coal Mines,2018,49(10):139−142.
[8] 安晋松,寇子明,孟巧荣. 矿井瞬变电磁法干扰源测试研究[J]. 太原理工大学学报,2015,46(1):40−44. AN Jinsong,KOU Ziming,MENG Qiaorong. The experiment of interference sources to transient electromagnetic method in mine[J]. Journal of Taiyuan University of Technology,2015,46(1):40−44.
[9] FAN Tao,QI Zhipeng,YAN Bin,et al. Full waveform inversions of borehole transient electromagnetic virtual wave fields and potential applications[J]. Journal of Environmental & Engineering Geophysics,2020,25(2):211−222.
[10] 孙怀凤,程铭,宿传玺,等. 隧(巷)道掘进工作面–钻孔瞬变电磁超前探测方法物理模拟试验研究[J]. 煤炭学报,2017,42(8):2110−2115. SUN Huaifeng,CHENG Ming,SU Chuanxi,et al. Tunnel face–borehole transient electromagnetic method and its physical experimental studies[J]. Journal of China Coal Society,2017,42(8):2110−2115.
[11] KOZHEVNIKOV N O,ANTONOV E Y,KAMNEV Y K,et al. Effects of borehole casing on TEM response[J]. Russian Geology and Geophysics,2014,55(11):1333−1339.
[12] 范涛,张幼振,赵睿,等. 基于钻孔TEM智能立体成像的快速掘进超前探测方法[J]. 煤炭学报,2021,46(2):578−590. FAN Tao,ZHANG Youzhen,ZHAO Rui,et al. Advance detection method of rapid excavation based on borehole TEM intelligent stereo imaging[J]. Journal of China Coal Society,2021,46(2):578−590.
[13] KASSAMBARA A. Practical guide to cluster analysis in R:Unsupervised machine learning[M]. CreateSpace Independent Publishing Platform,2017.
[14] MADHULATHA T S. An overview on clustering methods[J]. IOSR Journal of Engineering,2012,2(4):719−725.
[15] 王伟涛,王宝善. 基于聚类分析的多尺度相似地震快速识别方法及其在汶川地震东北端余震序列分析中的应用[J]. 地球物理学报,2012,55(6):1952−1962. WANG Weitao,WANG Baoshan. Quick identification of multilevel similar earthquakes using hierarchical clustering method and its application to Wenchuan northeast aftershock sequence[J]. Chinese Journal of Geophysics,2012,55(6):1952−1962.
[16] 张岩,任伟建,唐国维. 应用结构聚类字典学习压制地震数据随机噪声[J]. 石油地球物理勘探,2018,53(6):1119−1127. ZHANG Yan,REN Weijian,TANG Guowei. Random noise suppression on seismic data based on structured–clustering dictionary learning[J]. Oil Geophysical Prospecting,2018,53(6):1119−1127.
[17] SCITOVSKI S. A density–based clustering algorithm for earthquake zoning[J]. Computers & Geosciences,2018,110:90−95.
[18] 张新兵,王家林,陈冰. 一种基于改进K–均值算法的重磁局部异常圈定方法[C]//中国地球物理学会第22届年会论文集. 成都:四川科学技术出版社,2006.
[19] 李斐,王殊伟,柯宝贵. 应用聚类分析方法进行实测重力数据的选点优化[J]. 武汉大学学报(信息科学版),2009,34(3):257−260. LI Fei,WANG Shuwei,KE Baogui. Optimization of gravimetric data positions for computation local geoid by clustering analysis[J]. Geomatics and Information Science of Wuhan University,2009,34(3):257−260.
[20] 曹书锦,朱自强,鲁光银. 基于自适应模糊聚类分析的重力张量欧拉反褶积解[J]. 中南大学学报(自然科学版),2012,43(3):1033−1039. CAO Shujin,ZHU Ziqiang,LU Guangyin. Gravity tensor euler deconvolution solutions based on adaptive fuzzy cluster analysis[J]. Journal of Central South University (Science and Technology),2012,43(3):1033−1039.
[21] 杨生,杨彦峰. 大地电磁测深法曲线类型的聚类分析[J]. 物探化探计算技术,2002,24(3):231−233. YANG Sheng,YANG Yanfeng. Clustering analysis of curve type of magnetotelluric method[J]. Computing Techniques for Geophysical and Geochemical Exploration,2002,24(3):231−233.
[22] SONG Yuchen,MENG Haidong,O' GRADY M J,et al. The application of cluster analysis in geophysical data interpretation[J]. Computational Geosciences,2010,14(2):263−271.
[23] AUDEBERT M,CLEMENT R,TOUZE–FOLTZ N,et al. Time–lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS)[J]. Journal of Applied Geophysics,2014,111:320−333.
[24] 李晋,汤井田,燕欢,等. 基于递归分析和聚类的大地电磁信噪辨识及分离[J]. 地球物理学报,2017,60(5):1918−1936. LI Jin,TANG Jingtian,YAN Huan,et al. Identification and spearation of magnetotelluric signal and noise based on recurrence analysis and clustering[J]. Chinese Journal of Geophysics,2017,60(5):1918−1936.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons