Coal Geology & Exploration
Abstract
Due to the complex response law of the surface-borehole Transient Electromagnetic Method (TEM), qualitative analysis and semi-quantitative interpretation are the most widely used interpretation methods. However, the methods cannot obtain the resistivity parameter of the earth directly. To solve this problem, a fast quantitative interpretation method based on transient impulse peak time is proposed. Firstly, the expression of uniform half-space surface-borehole transient electromagnetic response is given, and the impulse time characteristics of surface-borehole transient electromagnetic response are analyzed. The results show that the deeper the receiving point is buried and the higher the earth conductivity is, the later the transient impulse time is. Based on the previous research results, the function between impulse time and earth conductivity is deduced, and the apparent resistivity is defined according to inverse function theory. In order to obtain the true resistivity of the earth, an improved resistivity recovery algorithm based on the diffusion velocity of the underground electromagnetic field is derived. The algorithm is applied to design the uniform half-space model, two-layer model and three-layer model respectively according to the common working mode in practice. Synthetic and measured examples show that the method of defining apparent resistivity based on impulse time can reflect the variation trend of earth resistivity well, but it has strong volume effect. The improved algorithm based on the diffusion velocity of the electromagnetic field can effectively weaken the volume effect, recover the resistivity value and reflect the electrical interface more accurately. This algorithm does not need iterative forward modeling calculation of complex models, so it has high efficiency, and can quantitatively recover the value of earth resistivity, which make it suitable for quick preliminary quantitative interpretation of the surface-borehole TEM. However, the “overshoot” and “undershoot” phenomena in the apparent resistivity definition should also be carefully considered when the algorithm is applied to data processing and interpretation to avoid incorrect interpretation.
Keywords
surface-borehole TEM, transient impulse peak time, quantitative interpretation, apparent resistivity definition, earth resistivity, improved algorithm
DOI
10.12363/issn.1001-1986.21.12.0762
Recommended Citation
ZHI Qingquan, WU Junjie, WANG Xingchun,
et al.
(2022)
"Fast quantitative interpretation of surface-borehole TEM using transient impulse peak time,"
Coal Geology & Exploration: Vol. 50:
Iss.
7, Article 7.
DOI: 10.12363/issn.1001-1986.21.12.0762
Available at:
https://cge.researchcommons.org/journal/vol50/iss7/7
Reference
[1] KING A. Deep drillhole electromagnetic surveys for nickel/copper sulphides at Sudbury,Canada[J]. Exploration Geophysics,1996,27(3):105−118.
[2] 严加永,滕吉文,吕庆田. 深部金属矿产资源地球物理勘查与应用[J]. 地球物理学进展,2008,23(3):871−891. YAN Jiayong,TENG Jiwen,LYU Qingtian. Geophysical exploration and application of deep metallic ore resources[J]. Progress in Geophysics,2008,23(3):871−891.
[3] 叶益信,邓居智,李曼,等. 电磁法在深部找矿中的应用现状及展望[J]. 地球物理学进展,2011,26(1):327−334. YE Yixin,DENG Juzhi,LI Man,et al. Application status and vistas of electromagnetic methods to deep ore prospecting[J]. Progress in Geophysics,2011,26(1):327−334.
[4] 王鹏. 积水采空区地井瞬变电磁法探测[J]. 煤炭技术,2017,36(6):134−136. WANG Peng. Surface–hole TEM for detection of coal mine water collecting area[J]. Coal Technology,2017,36(6):134−136.
[5] 范涛. 矿井巷道–钻孔瞬变电磁二维拟地震反演方法及应用[J]. 煤炭学报,2019,44(6):1804−1816. FAN Tao. Method and application on 2D pseudo−seismic inversion of roadway−borehole transient electromagnetic detection in coal mine[J]. Journal of China Coal Society,2019,44(6):1804−1816.
[6] 赵睿,范涛,李宇腾,等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探,2020,48(4):41−45. ZHAO Rui,FAN Tao,LI Yuteng,et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration,2020,48(4):41−45.
[7] 苏超,姚伟华,李明星. 地孔瞬变电磁超前探测异常体定位技术[J]. 煤炭科学技术,2021,49(7):154−161. SU Chao,YAO Weihua,LI Mingxing. Anomaly body advance detection technology of down–hole transient electromagnetic[J]. Coal Science and Technology,2021,49(7):154−161.
[8] WAIT J R,HILL D A. Transient signals from a buried magnetic dipole[J]. Journal of Applied Physics,1971,42(10):3866−3869.
[9] WAIT J R,HILL D A. Transient electromagnetic fields of a finite circular loop in the presence of a conducting half–space[J]. Journal of Applied Physics,1972,43(11):4532−4534.
[10] WAIT J R,HILL D A. Transient magnetic fields produced by a step−function−excited loop buried in the earth[J]. Electronics Letters,1972,8(11):294−295.
[11] KEY K. 1D inversion of multicomponent,multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics,2009,74(2):F9−F20.
[12] 武军杰,李貅,智庆全,等. 电性源地–井瞬变电磁异常场响应特征初步分析[J]. 物探与化探,2017,41(1):129−135. WU Junjie,LI Xiu,ZHI Qingquan,et al. A preliminary analysis of anomalous TEM response chamcteristics in borehole with electric source transmitter[J]. Geophysical and Geochemical Exploration,2017,41(1):129−135.
[13] 陈卫营,韩思旭,薛国强. 电性源地–井瞬变电磁法全分量响应特性与探测能力分析[J]. 地球物理学报,2019,62(5):1969−1980. CHEN Weiying,HAN Sixu,XUE Guoqiang. Analysis on the full–component response and detectability of electric source surface–to–borehole TEM method[J]. Chinese Journal of Geophysics,2019,62(5):1969−1980.
[14] 李建慧,胡祥云,曾思红,等. 基于电场Helmholtz方程的回线源瞬变电磁法三维正演[J]. 地球物理学报,2013,56(12):4256−4267. LI Jianhui,HU Xiangyun,ZENG Sihong,et al. Three–dimensional forward calculation for loop source transient electromagnetic method based on electric field Helmholtz equation[J]. Chinese Journal of Geophysics,2013,56(12):4256−4267.
[15] 李建慧,刘树才,焦险峰,等. 地–井瞬变电磁法三维正演研究[J]. 石油地球物理勘探,2015,50(3):556−564. LI Jianhui,LIU Shucai,JIAO Xianfeng,et al. Three–dimensional forward modeling for surface–borehole transient electromagnetic method[J]. Oil Geophysical Prospecting,2015,50(3):556−564.
[16] 孟庆鑫,潘和平. 地–井瞬变电磁响应特征数值模拟分析[J]. 地球物理学报,2012,55(3):1046−1053. MENG Qingxin,PAN Heping. Numerical simulation analysis of surface–hole TEM responses[J]. Chinese Journal of Geophysics,2012,55(3):1046−1053.
[17] 杨海燕,岳建华,徐正玉,等. 覆盖层影响下典型地–井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版),2016,46(5):1527−1537. YANG Haiyan,YUE Jianhua,XU Zhengyu,et al. Transient electromagnetic method modeling in ground–borehole model with overburden influence[J]. Journal of Jilin University (Earth Science Edition),2016,46(5):1527−1537.
[18] 孙怀凤,程铭,吴启龙,等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报,2018,61(12):5096−5104. SUN Huaifeng,CHENG Ming,WU Qilong,et al. A multi–scale grid scheme in three–dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal of Geophysics,2018,61(12):5096−5104.
[19] 周建美,刘文韬,李貅,等. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法[J]. 地球物理学报,2018,61(1):368−378. ZHOU Jianmei,LIU Wentao,LI Xiu,et al. Research on the 3D mimetic finite volume method for loop–source TEM response in biaxial anisotropic formation[J]. Chinese Journal of Geophysics,2018,61(1):368−378.
[20] NABIGHIAN M N. Quasi−static transient response of a conducting half−space:An approximate representation[J]. Geophysics,1979,44(10):1700−1705.
[21] ZIOLKOWSKI A,CARSON R,WRIGHT D. New technology to acquire,process,and interpret transient EM data[C]//EGM 2007 International Workshop. European Association of Geoscientists & Engineers. Capri Italy,2007:cp-166-00049.
[22] 罗维斌,汤井田. 海底油气藏及天然气水合物的时频电磁辨识[J]. 地球物理学进展,2008,23(6):1841−1848. LUO Weibin,TANG Jingtian. Identification of seafloor hydrocarbon reservoir and gas hydrate using controlled–source electromagnetics in time and frequency domain[J]. Progress in Geophysics,2008,23(6):1841−1848.
[23] 汤井田,罗维斌,刘长生. 海底油气藏地质模型的冲激响应[J]. 地球物理学报,2008,51(6):1929−1935. TANG Jingtian,LUO Weibin,LIU Changsheng. Impulse response of seafloor hydrocarbon reservoir model[J]. Chinese Journal of Geophysics,2008,51(6):1929−1935.
[24] 张杰,吕国印,赵敬洗,等. 地–井TEM向量交会技术的实现和应用效果[J]. 物探化探计算技术,2007,29(增刊1):162−165. ZHANG Jie,LYU Guoyin,ZHAO Jingxi,et al. The method of surface–borehole TEM vector intersection and its application[J]. Computing Techniques for Geophysical and Geochemical Exploration,2007,29(Sup.1):162−165.
[25] 杨毅,智庆全,邓晓红,等. 基于层状大地响应的异常场提取与载流环地–井TEM反演技术[J]. 地球物理学进展,2018,33(5):2048−2055. YANG Yi,ZHI Qingquan,DENG Xiaohong,et al. Anomalous field extraction based on layered earth response and filament inversion technique of borehole TEM[J]. Progress in Geophysics,2018,33(5):2048−2055.
[26] 武军杰,李貅,智庆全,等. 电性源地–井瞬变电磁全域视电阻率定义[J]. 地球物理学报,2017,60(4):1595−1605. WU Junjie,LI Xiu,ZHI Qingquan,et al. Full field apparent resistivity definition of borehole TEM with electric source[J]. Chinese Journal of Geophysics,2017,60(4):1595−1605.
[27] CHAVE A D. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J]. Geophysics,1983,48(12):1671−1686.
[28] ORISTAGLIO M. Diffusion of electromagnetic fields into the earth from a line source of current[J]. Geophysics,1982,47(11):1585−1592.
[29] 智庆全,武军杰,王兴春,等. 三分量定源瞬变电磁解释技术及其在金属矿区的实验[J]. 物探与化探,2016,40(4):798−803. ZHI Qingquan,WU Junjie,WANG Xingchun,et al. Three–component interpretation technique of fixed source TEM and its experimental application in metallic ore district[J]. Geophysical and Geochemical Exploration,2016,40(4):798−803.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons