•  
  •  
 

Coal Geology & Exploration

Abstract

As the core part of hydro-jet radial drilling technology for coal-measure gas extraction, the self-propelled jet drill bit has a decisive impact on drilling efficiency. In order to obtain the optimal parameters of the direct rotating mixed jet, the velocity characteristics of the three-dimensional flow field with different bit structure parameters are analyzed by the combination of Fluent numerical simulation and specific experiments, and the optimization criteria are given. The optimal parameters of the drill bit are obtained in the drilling test: the central hole of diameter 1.2 mm, the impeller groove of width 0.7 mm, the impeller of thickness 4.5 mm, radial length 3.5 mm, and inclination angle 45°, and the mixing chamber of length 6 mm. Through theoretical analysis, the reasons why different parameters change the bit drilling speed are explained. That is, the three-dimensional change of the jet is caused mainly by affecting the flux of the direct flow and rotating jet in the direct rotating mixed jet. The sensitivity coefficients of each parameter structure on drilling displacement are obtained by using gray correlation analysis from high to low are as follows: center hole diameter, impeller groove width, impeller radial length, mixing chamber length, impeller inclination and impeller thickness. The results show that the optimized jet bit has higher drilling efficiency. In the correlation analysis, the direct flow and rotating jet flux have the greatest impact on the drilling efficiency, and the jet energy distribution is more reasonable when the direct rotating flux ratio is 0.54. The research has guiding significance for the design and structure optimization of bits in the radial drilling of coalbed methane, and natural gas production.

Keywords

straight-swirling mixed jet bit, radial drilling, three-dimensional velocity, grey correlation degree, drilling experiment

DOI

10.12363/issn.1001-1986.21.11.0696

Reference

[1] 董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(增刊1):107−114. DONG Dazhong,ZOU Caineng,YANG Hua,et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica,2012,33(Sup.1):107−114.

[2] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发,2019,9(5):14−19. GUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development,2019,9(5):14−19.

[3] 宋岩,张新民,柳少波. 中国煤层气基础研究和勘探开发技术新进展[J]. 天然气工业,2005,25(1):1−7. SONG Yan,ZHANG Xinmin,LIU Shaobo. Subject headings:Coalbed methane,research progress,existing problem,China[J]. Natural Gas Industry,2005,25(1):1−7.

[4] 董大忠,邹才能,李建忠,等. 页岩气资源潜力与勘探开发前景[J]. 地质通报,2011,30(2/3):324−336. DONG Dazhong,ZOU Caineng,LI Jianzhong,et al. Resource potential,exploration and development prospect of shale gas in the whole world[J]. Geological Bulletin of China,2011,30(2/3):324−336.

[5] 刘晓,李勇,宣德全,等. 软煤夹层水射流层状卸压增透抽采瓦斯数值模拟及试验[J]. 煤田地质与勘探,2021,49(2):54−61. LIU Xiao,LI Yong,XUAN Dequan,et al. Numerical simulation and test of gas drainage with water jet layered pressure relief and permeability enhancement in soft coal seam[J]. Coal Geology & Exploration,2021,49(2):54−61.

[6] 廖华林,牛继磊,程宇雄,等. 多孔喷嘴破岩钻孔特性的实验研究[J]. 煤炭学报,2011,36(11):1858−1862. LIAO Hualin,NIU Jilei,CHENG Yuxiong,et al. Experimental study on water jet breaking rock by multi−orifice nozzle[J]. Journal of China Coal Society,2011,36(11):1858−1862.

[7] 张彪. 煤层气径向钻井水力破煤机理研究[D]. 北京:中国石油大学(北京),2017.

ZHANG Biao. Study on hydraulic coal breaking mechanism of CBM radial drilling[D]. Beijing:China University of Petroleum(Beijing),2017.

[8] 桂小玲. 高压水射流技术在煤层气开发中的应用研究现状及发展趋势[J]. 能源与环保,2018,40(8):1−4. GUI Xiaoling. Research status and prospect of high pressure water jet in coal−gas exploration[J]. China Energy and Environmental Protection,2018,40(8):1−4.

[9] 刘勇,卢义玉,李晓红,等. 高压脉冲水射流顶底板钻孔提高煤层瓦斯抽采率的应用研究[J]. 煤炭学报,2010,35(7):1115−1119. LIU Yong,LU Yiyu,LI Xiaohong,et al. Application of drilling in roof or floor with high pulse pressure water jet to improve gas drainage[J]. Journal of China Coal Society,2010,35(7):1115−1119.

[10] 王伟. 高压旋转水射流破煤及其冲孔造穴卸压增透机制与应用[D]. 徐州:中国矿业大学,2016.

WANG Wei. Coal breakage impact by high pressure rotary water jet and induced pressure relief and permeability enhancement by hydraulic flushing cavity:Mechanism and application[D]. Xuzhou:China University of Mining and Technology,2016.

[11] 高亚斌. 钻孔水射流冲击动力破煤岩增透机制及其应用研究[D]. 徐州:中国矿业大学,2016.

GAO Yabin. Research on the mechanism of permeability enhancement based on breaking coal−rock by dynamic impact of water jet in boreholes and its application on gas extraction[D]. Xuzhou:China University of Mining and Technology,2016.

[12] DICKINSON W,ANDERSON R R,DICKINSON R W. The ultrashort–radius radial system[J]. SPE Drilling Engineering,1989,4(3):247−254.

[13] BUCKMAN J D,DOTSON T L,BELL W S,et al. Nozzle for jet drilling and associated method:USA,6668948[P]. 2003–12–30.

[14] 张小宁,刘新云,张明坤,等. 新型双射流喷嘴冲击井底流场数值模拟研究[J]. 石油机械,2014,42(9):11−14. ZHANG Xiaoning,LIU Xinyun,ZHANG Mingkun,et al. Numerical simulation of flow field of novel dual–jet nozzle jetting on bottomhole[J]. China Petroleum Machinery,2014,42(9):11−14.

[15] 吴德松,廖华林,杨斌. 直旋混合射流喷嘴结构参数对流场特性的影响[J]. 水动力学研究与进展 A 辑,2014,29(4):421−428. WU Desong,LIAO Hualin,YANG Bin. Study on the influence of nozzle structural parameters of straight–swirling integrated jet on flow field characteristics[J]. Chinese Journal of Hydrodynamics,2014,29(4):421−428.

[16] 毕刚,李根生,沈忠厚,等. 径向水平井自进式旋转射流钻头流场特性分析[J]. 流体机械,2014,42(5):25−30. BI Gang,LI Gensheng,SHEN Zhonghou,et al. Flow field study on self–propelled conical jet bit for radial horizontal drilling[J]. Fluid Machinery,2014,42(5):25−30.

[17] 杜鹏. 直旋混合射流流场特性及破岩机理研究[D]. 重庆:重庆大学,2016.

DU Peng. Study on the flow field and rock breaking mechanism of straight−swirling integrated jet[D]. Chongqing:Chongqing University,2016.

[18] 杜鹏,卢义玉,汤积仁,等. 新型直旋混合射流破岩特性及机理分析[J]. 西安交通大学学报,2016,50(3):81−89. DU Peng,LU Yiyu,TANG Jiren,et al. Characteristics and mechanism of rock breaking for new type straight–swirling integrated jet[J]. Journal of Xi’an Jiaotong University,2016,50(3):81−89.

[19] 杜鹏,董超超,张汶定,等. 直旋混合射流钻头流场及关键参数研究[J]. 煤矿机械,2021,42(10):61−63. DU Peng,DONG Chaochao,ZHANG Wending,et al. Study on flow field and key parameters of straight−swirling mixing jet bit[J]. Coal Mine Machinery,2021,42(10):61−63.

[20] HAYASHI C,SHEPARD S,WINKLER I,et al. Nonlinear oscillations in physical systems[M]. New York:McGraw–Hill,1964.

[21] 孙久瑞. 煤层气井近井区煤岩破碎研究及安全分析[D]. 青岛:中国石油大学(华东),2017.

SUN Jiurui. Research and safety analysis of coal rock fracturing in the near wellbore of coalbed methane wells[D]. Qingdao:China University of Petroleum (East China),2017.

[22] 张启龙,田守嶒,陈立强,等. 基于灰色关联度的超临界二氧化碳直旋射流参数敏感性[J]. 大庆石油地质与开发,2021,40(4):63−72. ZHANG Qilong,TIAN Shouceng,CHEN Liqiang,et al. Parameter sensitivity of supercritical CO2 swirling–round jet based on grey correlation degree method[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(4):63−72.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.