Coal Geology & Exploration
Abstract
The frequent occurrence of gas emission and outburst accidents caused by rock bursts in deep coal seams poses a great threat to safe underground production. Therefore, clarifying the evolution law of the mechanical properties and burst potential of gas on coal and rock is the basis for establishing effective prevention and control measures. Using the self-developed visual coal fluid-solid coupling test system, we carried out the physical experiment to study the gas adsorption, mechanical properties and fragment distribution of coal affected by gas pressure, and analyzed the evolution characteristics and mechanism of the bursting energy index. The results show that the gas isotherm adsorption curve of coal with strong burst potential conforms to the Langmuir model. With the increase of gas pressure, the softening characteristics become more obvious, the elastic modulus and the softening modulus decrease in stages, where the gas has different effects on them before and after the stress peak of coal and there is a critical pressure. The impact energy index and the fragment size of the samples show a “V” type change characteristic of first decreasing and then increasing. Their failure modes are “brittle tension → shear → tension + plastic flow”, and there is more surplus energy after fragmentation. The small-scale fragments of gas-bearing coal are the objective condition for disaster occurrence. The gas expansion energy provides additional energy for the dynamic instability of coal mass, which increases the strong dynamic and destructive nature of the occurrence process of rock bursts, and the solid-fluid coupling of coal matrix framework and gas migration reduces the critical index and has a higher disaster-causing potential. The research results and enlightenment provide an experimental basis and ideas for accurately determining the catastrophic liability of deep coal seams with high gas pressure, and develope effective prevention and control methods.
Keywords
coal mechanical property, bursting energy index, rock burst, coal seam with high gas pressure, gas adsorption characteristics, fractal dimension
DOI
10.12363/issn.1001-1986.21.11.0692
Recommended Citation
DING Xin, XIAO Xiaochun, PAN Yishan,
et al.
(2022)
"Mechanical properties and impact energy index of coal affected by gas pressure and evolutionary mechanism,"
Coal Geology & Exploration: Vol. 50:
Iss.
7, Article 13.
DOI: 10.12363/issn.1001-1986.21.11.0692
Available at:
https://cge.researchcommons.org/journal/vol50/iss7/13
Reference
[1] 潘一山. 煤矿冲击地压[M]. 北京:科学出版社,2018.
[2] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40. QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
[3] 姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188−2204. JIANG Yaodong,ZHAO Yixin. State of the art:Investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188−2204.
[4] 章梦涛,徐曾和,潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报,1991,16(4):48−53. ZHANG Mengtao,XU Zenghe,PAN Yishan,et al. A united instability theory on coal (rock) burst and outburst[J]. Journal of China Coal Society,1991,16(4):48−53.
[5] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报,2016,41(1):105−112. PAN Yishan. Integrated study on compound dynamic disaster of coal–gas outburst and rockburst[J]. Journal of China Coal Society,2016,41(1):105−112.
[6] 朱丽媛,潘一山,李忠华,等. 深部矿井冲击地压、瓦斯突出复合灾害发生机理[J]. 煤炭学报,2018,43(11):3042−3050. ZHU Liyuan,PAN Yishan,LI Zhonghua,et al. Mechanisms of rockburst and outburst compound disaster in deep mine[J]. Journal of China Coal Society,2018,43(11):3042−3050.
[7] 施天威,潘一山,王爱文,等. 基于能量贮存及释放主体的煤矿冲击地压分类[J]. 煤炭学报,2020,45(2):524−532. SHI Tianwei,PAN Yishan,WANG Aiwen,et al. Classification of rock burst in coal mine based on energy storage and release bodies[J]. Journal of China Coal Society,2020,45(2):524−532.
[8] 齐庆新,潘一山,李海涛,等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报,2020,45(5):1567−1584. QI Qingxin,PAN Yishan,LI Haitao,et al. Theoretical basis and key technology of prevention and control of coal–rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society,2020,45(5):1567−1584.
[9] 李铁,梅婷婷,李国旗,等. “三软”煤层冲击地压诱导煤与瓦斯突出力学机制研究[J]. 岩石力学与工程学报,2011,30(6):1283−1288. LI Tie,MEI Tingting,LI Guoqi,et al. Mechanism study of coal and gas outburst induced by rockburst in “three−soft” coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(6):1283−1288.
[10] 李铁,蔡美峰,王金安,等. 深部开采冲击地压与瓦斯的相关性探讨[J]. 煤炭学报,2005,30(5):562−567. LI Tie,CAI Meifeng,WANG Jin’an,et al. Discussion on relativity between rockburst and gas in deep exploitation[J]. Journal of China Coal Society,2005,30(5):562−567.
[11] 赵洪宝,李振华,仲淑姮,等. 单轴压缩状态下含瓦斯煤岩力学特性试验研究[J]. 采矿与安全工程学报,2010,27(1):131−134. ZHAO Hongbao,LI Zhenhua,ZHONG Shuheng,et al. Experimental study of mechanical properties of coal rock containing gas under uniaxial compression[J]. Journal of Mining & Safety Engineering,2010,27(1):131−134.
[12] 宋真龙,韩佩博,李文璞,等. 瓦斯对冲击性煤样能量耗散的影响[J]. 煤炭学报,2015,40(4):843−849. SONG Zhenlong,HAN Peibo,LI Wenpu,et al. Impact of energy dissipation of coal samples with rockburst tendency from gas in its failure process[J]. Journal of China Coal Society,2015,40(4):843−849.
[13] XUE Yi,GAO Feng,TENG Teng,et al. Effect of gas pressure on rock burst proneness indexes and energy dissipation of coal samples[J]. Geotechnical and Geological Engineering,2016,34(6):1737−1748.
[14] 丁鑫,肖晓春,潘一山,等. 煤岩本构关系与冲击倾向指标的力学分析[J]. 地下空间与工程学报,2020,16(5):1371−1382. DING Xin,XIAO Xiaochun,PAN Yishan,et al. Coal constitutive relation and mechanical analysis of its impact tendency index[J]. Chinese Journal of Underground Space and Engineering,2020,16(5):1371−1382.
[15] 王祖洸,高保彬,吕蓬勃. 单轴压缩条件下含瓦斯煤样力学性质研究[J]. 中国科技论文,2017,12(15):1764−1769. WANG Zuguang,GAO Baobin,LYU Pengbo. Study on mechanical properties of coal containing gas under uniaxial compression[J]. China Sciencepaper,2017,12(15):1764−1769.
[16] 张广辉,欧阳振华,齐庆新,等. 瓦斯对煤冲击倾向性影响的试验研究[J]. 煤炭学报,2017,42(12):3159−3165. ZHANG Guanghui,OUYANG Zhenhua,QI Qingxin,et al. Experimental research on the influence of gas on coal burst tendency[J]. Journal of China Coal Society,2017,42(12):3159−3165.
[17] 杨丹,刘洋. 含瓦斯煤体的冲击力学特性研究[J]. 力学与实践,2020,42(4):435−441. YANG Dan,LIU Yang. The impact mechanical properties of coal containing gas[J]. Mechanics in Engineering,2020,42(4):435−441.
[18] WANG Shugang,ELSWORTH D,LIU Jishan. Mechanical behavior of methane infiltrated coal:The roles of gas desorption,stress level and loading rate[J]. Rock Mechanics and Rock Engineering,2013,46:945−958.
[19] ESPINOZA D N,PEREIRA J M,VANDAMME M,et al. Desorption–induced shear failure of coal bed seams during gas depletion[J]. International Journal of Coal Geology,2015,137:142−151.
[20] 卢平,沈兆武,朱贵旺,等. 含瓦斯煤的有效应力与力学变形破坏特性[J]. 中国科学技术大学学报,2001,31(6):686−693. LU Ping,SHEN Zhaowu,ZHU Guiwang,et al. The effective stress and mechanical deformation and damage characteristics of gas−filled coal[J]. Journal of China University of Science and Technology,2001,31(6):686−693.
[21] 王家臣,邵太升,赵洪宝. 瓦斯对突出煤力学特性影响试验研究[J]. 采矿与安全工程学报,2011,28(3):391−394. WANG Jiachen,SHAO Taisheng,ZHAO Hongbao. Experimental study of effect of gas on mechanical properties of outburst coal[J]. Journal of Mining & Safety Engineering,2011,28(3):391−394.
[22] HU Shaobin,WANG Enyuan,LIU Xiaofei. Effective stress of gas–bearing coal and its dual pore damage constitutive model[J]. International Journal of Damage Mechanics,2016,25(4):468−490.
[23] 尹万蕾,潘一山,李忠华,等. 深部煤层瓦斯对煤力学性质影响规律研究[J]. 实验力学,2016,31(6):858−865. YIN Wanlei,PAN Yishan,LI Zhonghua,et al. On the effect of deep coal seam gas to coal mechanical properties[J]. Journal of Experimental Mechanics,2016,31(6):858−865.
[24] WANG Kai,DU Feng,ZHANG Xiang,et al. Mechanical properties and permeability evolution in gas bearing coal–rock combination body under triaxial conditions[J]. Environmental Earth Sciences,2017,76:815.
[25] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 冲击地压测定、监测与防治方法——第2部分:煤的冲击倾向性分类及指数的测定方法:GB/T 25217.2—2010[S]. 北京:中国标准出版社,2010.
[26] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤的高压等温吸附试验方法:GB/T 19560—2008[S]. 北京:中国标准出版社,2008.
[27] 程远平,刘清泉,任廷祥. 煤力学[M]. 北京:科学出版社,2017.
[28] XIE Heping. Fractals in rock mechanics[M]. Rotterdam:A. A. Balkema,1993.
[29] 高峰,谢和平,巫静波. 岩石损伤和破碎相关性的分形分析[J]. 岩石力学与工程学报,1999,18(5):497−502. GAO Feng,XIE Heping,WU Jingbo. Fractal analysis of the relation between rock damage and rock fragmentation[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(5):497−502.
[30] 丁鑫,肖晓春,吕祥锋,等. 煤体破裂分形特征与声发射规律研究[J]. 煤炭学报,2018,43(11):3080−3087. DING Xin,XIAO Xiaochun,LYU Xiangfeng,et al. Investigate on the fractal characteristics and acoustic emission of coal fracture[J]. Journal of China Coal Society,2018,43(11):3080−3087.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons