Coal Geology & Exploration
Abstract
The carboniferous-Permian No. 6 coal seam in the eastern Jungar Coalfield of Ordos Basin is an extra-thick coal seam, and the coal floor is particularly threatened by the Ordovician limestone aquifer. The mining effect will lead to the formation of the bottom mining damage zone, and new water-conducting channels may be formed, which in turn will cause sudden water disasters. Aiming at the testing problem of floor mining failure zone, the method of transient electromagnetic method in hole with moving source and receiving is proposed to obtain resistivity characteristic data of strata from floor drilling before and after mining. Firstly, the resistivity difference of the TEM method in the complete and two-layer rock model is compared by numerical simulation, and the proposed method has a good resolution for the two-layer rock model. We conducted a test at the fully mechanized top coal caving face 6119 extra-thick coal seam in Jungar coalfield, and obtained the bottom damage depth by probing the bottom electrical difference layer, and the results were verified to be accurate and reliable. The research shows that the more accurate floor failure depth can be obtained by comparing the results of pre-mining and post-mining, which provides a new method for testing the failure depth of working face under similar conditions.
Keywords
floor failure depth, transient electromagnetic method in hole, electrical damage layer, subsection water pressure test
DOI
10.12363/issn.1001-1986.21.12.0862
Recommended Citation
WANG Cheng, AN Youxin, ZHU Hongjun,
et al.
(2022)
"Application of borehole transient electromagnetic method in detection of floor failure depth in fully mechanized top coal caving face,"
Coal Geology & Exploration: Vol. 50:
Iss.
7, Article 11.
DOI: 10.12363/issn.1001-1986.21.12.0862
Available at:
https://cge.researchcommons.org/journal/vol50/iss7/11
Reference
[1] 虎维岳. 深部煤炭开采地质安全保障技术现状与研究方向[J]. 煤炭科学技术,2013,41(8):1−5. HU Weiyue. Study orientation and present status of geological guarantee technologies to deep mine coal mining[J]. Coal Science and Technology,2013,41(8):1−5.
[2] 何满潮. 深部建井力学研究进展[J]. 煤炭学报,2021,46(3):726−746. HE Manchao. Research progress of deep shaft construction mechanics[J]. Journal of China Coal Society,2021,46(3):726−746.
[3] 荆自刚,李白英. 煤层底板突水机理的初步探讨[J]. 煤田地质与勘探,1980,8(2):51−56. JING Zigang,LI Baiying. Preliminary discussion on mechanism of water inrush from coal floor[J]. Coal Geology & Exploration,1980,8(2):51−56.
[4] 杨善安. “阻水系数”及其应用[J]. 煤田地质与勘探,1986,14(3):41−46. YANG Shan’an. “Water resistance coefficient”and its application[J]. Coal Geology & Exploration,1986,14(3):41−46.
[5] 刘宗才,于红. “下三带”理论与底板突水机理[J]. 中国煤田地质,1991,3(2):38−41. LIU Zongcai,YU Hong. “Lower three Zones”theory and mechanism of floor water inrush[J]. Coal Geology of China,1991,3(2):38−41.
[6] 王作宇,刘鸿泉. 煤层底板突水机制的研究[J]. 煤田地质与勘探,1989,19(1):36−39. WANG Zuoyu,LIU Hongquan. Investigation in floor−water−burst mechanism[J]. Coal Geology & Exploration,1989,19(1):36−39.
[7] 董书宁,王皓,张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度[J]. 煤炭学报,2019,44(7):2216−2226. DONG Shuning,WANG Hao,ZHANG Wenzhong. Judgement criteria with utilization and grouting reconstruction of top Ordovician limestone and floor damage depth in North China coal field[J]. Journal of China Coal Society,2019,44(7):2216−2226.
[8] 王厚柱,鞠远江,秦坤坤,等. 深部近距离煤层开采底板破坏规律实测对比研究[J]. 采矿与安全工程学报,2020,37(3):553−561. WANG Houzhu,JU Yuanjiang,QIN Kunkun,et al. A comparative study on floor failure law in deep and short−distance coal seam mining[J]. Journal of Mining & Safety Engineering,2020,37(3):553−561.
[9] 张金才,刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990,15(2):46−55. ZHANG Jincai,LIU Tianquan. On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics[J]. Journal of China Coal Society,1990,15(2):46−55.
[10] 张平松,孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展,2017,32(6):577−588. ZHANG Pingsong,SUN Binyang. Development status of the detection technology for coal−seam stope floor damage[J]. Advances in Earth Science,2017,32(6):577−588.
[11] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348−356. LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348−356.
[12] 董春勇,刘盛东. 高密度电法应用于监测底板破坏[C]//中国煤炭学会矿井地质专业委员会2008年学术论坛文集. 徐州:中国矿业大学出版社,2008.
[13] 吴荣新,刘盛东,张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报,2010,35(3):454−457. WU Rongxin,LIU Shengdong,ZHANG Pingsong. The exploration of two−gateways parallel 3−D electrical technology for water–rich area with in coal face floor[J]. Journal of China Coal Society,2010,35(3):454−457.
[14] 高召宁,孟祥瑞,赵光明. 煤层底板变形与破坏规律直流电阻率CT探测[J]. 重庆大学学报,2011,34(8):90−96. GAO Zhaoning,MENG Xiangrui,ZHAO Guangming. DC electrical resistivity CT survey of deformation and damage law of coal floor[J]. Journal of Chongqing University,2011,34(8):90−96.
[15] 杨峰,彭苏萍. 地质雷达技术探测矿井近隐患源新方法[J]. 煤炭学报,2006,31(增刊1):1−4. YANG Feng,PENG Suping. A new method of ground penetrating radar (GPR) exploration to near hidden trouble under mining[J]. Journal of China Coal Society,2006,31(Sup.1):1−4.
[16] 张平松,刘盛东,吴荣新. 地震波CT技术探测煤层上覆岩层破坏规律[J]. 岩石力学与工程学报,2004,23(15):2510−2513. ZHANG Pingsong,LIU Shengdong,WU Rongxin. Observation of overburden failure of coal seam by CT of seismic wave[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2510−2513.
[17] 张平松,刘畅,欧元超,等. 准格尔煤田特厚煤层开采底板破坏特征综合测试研究[J]. 煤田地质与勘探,2021,49(1):263−269. ZHANG Pingsong,LIU Chang,OU Yuanchao,et al. Comprehensive testing research on floor damage characteristics of mining extra–thick seam in Jungar coalfield[J]. Coal Geology & Exploration,2021,49(1):263−269.
[18] 范涛. 煤矿井下孔中瞬变电磁探测技术数值模拟和物理模拟研究[C]//2016中国地球科学联合学术年会论文集. 北京:中国和平音像电子出版社,2016.
[19] 陈丁,程久龙,王阿明. 矿井全空间孔中瞬变电磁响应积分方程法数值模拟研究[J]. 地球物理学报,2018,61(10):4182−4193. CHEN Ding,CHENG Jiulong,WANG Aming. Numerical simulation of drillhole transient electromagnetic response in mine roadway whole space using integral equation method[J]. Chinese Journal of Geophysics,2018,61(10):4182−4193.
[20] 张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173. ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.
[21] 范涛. 基于钻孔瞬变电磁的煤层气压裂效果检测方法[J]. 煤炭学报,2020,45(9):3195−3207. FAN Tao. Coalbed methane fracturing effectiveness test using bore–hole transient electromagnetic method[J]. Journal of China Coal Society,2020,45(9):3195−3207.
[22] 赵睿,范涛,李宇腾,等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探,2020,48(4):41−45. ZHAO Rui,FAN Tao,LI Yuteng,et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration,2020,48(4):41−45.
[23] 范涛,赵兆,吴海,等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报,2014,39(5):932−940. FAN Tao,ZHAO Zhao,WU Hai,et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society,2014,39(5):932−940.
[24] 范涛,李鸿泰,刘磊,等. 基于聚类算法的钻孔瞬变电磁视电阻率立体成像方法[J]. 地球科学与环境学报,2021,43(2):343−355. FAN Tao,LI Hongtai,LIU Lei,et al. Stereo imaging method of borehole transient electromagnetic apparent resistivity based on clustering algorithm[J]. Journal of Earth Sciences and Environment,2021,43(2):343−355.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons