•  
  •  
 

Coal Geology & Exploration

Authors

WU Junjie, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, ChinaFollow
LIU Bin, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
ZHI Qingquan, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
DENG Xiaohong, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
WANG Xingchun, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
YANG Yi, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
LIU Dongming, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; Key Laboratory of Geophysical Electromagnetic Probing Technologies, Ministry of Natural Resources, Langfang 065000, China
QIU Jinzhu, No.103 Branch Non-ferrous Geological of Liaoning Province Co., Ltd, Dandong 118000, China

Abstract

Deep mineral exploration is a challenge. The borehole Transient Electromagnetic Method (TEM) goes deep underground through the sensor along the borehole, and gets closer to the deep target, so as to improve the ore discovery rate and prospecting effect. TEM is widely used in deep prospecting and exploration in foreign countries, and has achieved many important results. However, in China, due to the slow development of instruments, theoretical research and interpretation technology, it is less used in practical deep prospecting. This paper introduces a typical case about the 2 000 m deep prospecting in Baiyun Gold Deposit in Qingchengzi, Liaoning Province. The borehole and surface TEM exploration is carried out, and the TEM data are tried to be comprehensively interpreted in order to explain the favorable metallogenic sites around the borehole more reasonably. The measured results show that the original TEM profile curve in the borehole has typical negative anomaly characteristics at the depth range of 1 400-1 650 m, indicating the existence of local conductive anomalies outside the borehole. In addition, polarization in the middle and late stages is caused by the mineralization of gold-related pyrite concentrated in fracture zones. The inversion results of surface TEM clearly show the typical distribution under the survey line, and the large extension of deep concealed faults, showing good metallogenic conditions. Through comprehensive analysis and interpretation, there are still good conditions for gold concentration in the deep part of the concealed fault speculated by TEM L52. The drilling data show that the comprehensive interpretation results of surface and borehole TEM are correct and reliable. The research results show that the surface and borehole TEM joint detection has a good application prospect in deep mineral exploration.

Keywords

Transient Electromagnetic Method (TEM), borehole TEM, surface TEM, deep mineral resources, Baiyun Gold Deposit, Qingchengzi ore concentration area, polarization phenomenon

DOI

10.12363/issn.1001-1986.21.11.0701

Reference

[1] LIU Jun,LIU Fuxing,LI Shenghui,et al. Formation of the Baiyun gold deposit,Liaodong gold province,NE China:Constraints from zircon U–Pb age,fluid inclusion,and C–H–O–Pb–He isotopes[J]. Ore Geology Reviews,2018,104:686−706.

[2] SUN Guotao,ZENG Qingdong,LI Taiyang,et al. Ore genesis of the Baiyun gold deposit in Liaoning Province,NE China: Constraints from fluid inclusions and zircon U-Pb ages[J]. Arabian Journal of Geosciences,2019,12(9):1−17.

[3] 王伟,刘福兴,郭强,等. 白云金矿床60号脉带原生晕分带特征及深部含矿性评价[J]. 矿床地质,2021,40(3):523−538. WANG Wei,LIU Fuxing,GUO Qiang,et al. Characteristics of primary halo and evaluation of deep mineralization along No.60 vein zone of Baiyun gold deposit[J]. Mineral Deposits,2021,40(3):523−538.

[4] 曾庆栋,陈仁义,杨进辉,等. 辽东地区金矿床类型、成矿特征及找矿潜力[J]. 岩石学报,2019,35(7):1939−1963. ZENG Qingdong,CHEN Renyi,YANG Jinhui,et al. The metallogenic characteristics and exploring ore potential of the gold deposits in eastern Liaoning Province[J]. Acta Petrologica Sinica,2019,35(7):1939−1963.

[5] 刘国平,艾永富. 辽宁白云金矿床某些基本问题探讨[J]. 矿床地质,1999,18(3):219−225. LIU Guoping,AI Yongfu. A discussion on some major problems of the Baiyun gold deposit,eastern Liaoning[J]. Mineral Deposits,1999,18(3):219−225.

[6] 张拴宏,胡国辉,李建锋,等. 辽东白云–小佟家堡子矿集区控矿构造及成矿有利区预测[J]. 地球科学,2020,45(11):3885−3899. ZHANG Shuanhong,HU Guohui,LI Jianfeng,et al. Ore–controlling structures and metallogenic favorable area prediction in Baiyun–Xiaotongjiabuzi ore concentration area,eastern Liaoning Province[J]. Earth Science,2020,45(11):3885−3899.

[7] 程莎莎,彭莉红,孙栋华,等. 青城子矿集区深部地质构造探测及找矿意义[J]. 物探与化探,2021,45(4):859−868. CHENG Shasha,PENG Lihong,SUN Donghua,et al. The exploration of deep geological structure in the Qingchengzi ore concentration area and its prospecting significance[J]. Geophysical & Geochemical Exploration,2021,45(4):859−868.

[8] ZHAO Weijun,SHA Deming,HUAN Hengfei,et al. Preliminary structure framework and concealed intrusive rocks in the Qingchengzi ore field in northeast China disclosed by large–scale two–dimensional audio–magnetotelluric sounding[C]//The Society of Exploration Geophysicist and the Chinese Geophysical Society GEM 2019. Xi’an,May 19-22,2019.

[9] 底青云,薛国强,雷达,等. 华北克拉通金矿综合地球物理探测研究进展:以辽东地区为例[J]. 中国科学:地球科学,2021,51(9):1524−1535. DI Qingyun,XUE Guoqiang,LEI Da,et al. Summary of technology for a comprehensive geophysical exploration of gold mine in North China Craton[J]. Science China Earth Sciences,2021,51(9):1524−1535.

[10] 武军杰,智庆全,邓晓红,等. 辽东白云金矿区深部地质结构的瞬变电磁法探测[J]. 地球科学,2020,45(11):4027−4037. WU Junjie,ZHI Qingquan,DENG Xiaohong,et al. Exploration of deep geological structure of Baiyun gold deposit in eastern Liaoning Province with TEM[J]. Earth Science,2020,45(11):4027−4037.

[11] 王兴春,邓晓红,陈晓东,等. 基于高温超导的瞬变电磁法在青城子矿集区的应用[J]. 地球科学,2021,46(5):1871−1880. WANG Xingchun,DENG Xiaohong,CHEN Xiaodong,et al. Application effect of TEM based on high temperature superconducting sensor in Qingchengzi ore−concentrated area[J]. Earth Science,2021,46(5):1871−1880.

[12] WU Junjie,CHEN Xiaodong,YANG Yi,et al. Application of TEM based on HTS SQUID magnetometer in deep geological structure exploration in the Baiyun gold deposit,NE China[J]. Journal of Earth Science,2021,32(1):1−7.

[13] WU Junjie,ZHI Qingquan,DENG Xiaohong,et al. Deep gold exploration with SQUID TEM in the Qingchengzi orefield,eastern Liaoning,northeast China[J]. Minerals,2022,12:102.

[14] BARNETT C. Simple inversion of time–domain electromagnetic data[J]. Geophysics,1984,49(7):925−933.

[15] 武军杰,李貅,智庆全,等. 电性源地–井瞬变电磁全域视电阻率定义[J]. 地球物理学报,2017,60(4):1595−1605. WU Junjie,LI Xiu,ZHI Qingquan,et al. Full field apparent resistivity definition of borehole TEM with electric source[J]. Chinese Journal of Geophysics,2017,60(4):1595−1605.

[16] EADIE T,STALTARI G. Introduction to downhole electromagnetic methods[J]. Exploration Geophysics,1987,18(3):247−351.

[17] THOMAS L. Short note:A simple interpretation aid for electromagnetic anomalies[J]. Exploration Geophysics,1987,18(3):349−351.

[18] HUGHES N A,RAVENHURST W. Three component DHEM surveying at Balcooma[J]. Exploration Geophysics,1996,27(3):77−89.

[19] ADAMSON M,RAY B,HUIZI A. Using low frequency ground and downhole TDEM to explore for massive sulfide mineralisation in the Carajás mineral Province[J]. ASEG Extended Abstracts,2019,2019(1):1−3.

[20] BEN P. The role of borehole EM in the discovery and definition of the Kelly Lake Ni–Cu deposit,Sudbury,Canada[J]. SEG Technical Program Expanded Abstracts,2000,19(1):1063−1066.

[21] KING A. Deep drillhole electromagnetic surveys for nickel/copper sulphides at Sudbury,Canada[J]. Exploration Geophysics,1996,27(3):105−118.

[22] SPICER B. Geophysical signature of the victoria property,vectoring toward deep mineralization in the Sudbury basin[J]. Interpretation,2016,4(3):281−290.

[23] ZHANG Z,XIAO J. Inversions of surface and borehole data from large−loop transient electromagnetic system over a 1−D earth[J]. Geophysics,2001,66(4):1090−1096.

[24] DUNCAN A. Interpretation of down–hole transient EM data using current filaments[J]. Exploration Geophysics,1987,18(2):36−39.

[25] FULLAGAR P K. Inversion of downhole TEM data using circular current filaments[J]. Exploration Geophysics,1987,18(3):341−344.

[26] CULL J P. Rotation and resolution of three–component DHEM data[J]. Exploration Geophysics,1996,27(2/3):155−159.

[27] LIU C. Study on 3D forward modeling & inversion of surface–borehole electromagnetic data[D]. Université du Québec en Abitibi-Témiscamingue,2021.

[28] 戴雪平. 地–井瞬变电磁法三维响应特征研究[D]. 北京:中国地质大学(北京),2013.

DAI Xueping. A research on three–dimensional response characteristics of borehole transient electromagnetic method[D]. Beijing:China University of Geosciences (Beijing),2013.

[29] 孟庆鑫,潘和平. 地–井瞬变电磁响应特征数值模拟分析[J]. 地球物理学报,2012,55(3):1046−1053. MENG Qingxin,PAN Heping. Numerical simulation analysis of surface–hole TEM responses[J]. Chinese Journal of Geophysics,2012,55(3):1046−1053.

[30] 杨怀杰,潘和平,孟庆鑫,等. 导电围岩对井中三维瞬变电磁响应的影响规律研究[J]. 石油物探,2016,55(2):288−293. YANG Huaijie,PAN Heping,MENG Qingxin,et al. Influence laws of conductive host on borehole 3D transient electromagnetic responses[J]. Geophysical Prospecting for Petroleum,2016,55(2):288−293.

[31] MENG Qingxin,HU Xiangyun,PAN Heping,et al. Numerical analysis of multicomponent responses of surface–hole transient electromagnetic method[J]. Applied Geophysics,2017,14(1):175−186.

[32] 李建慧,刘树才,焦险峰,等. 地–井瞬变电磁法三维正演研究[J]. 石油地球物理勘探,2015,50(3):556−564. LI Jianhui,LIU Shucai,JIAO Xianfeng,et al. Three–dimensional forward modeling for surface−borehole transient electromagnetic method[J]. Oil Geophysical Prospecting,2015,50(3):556−564.

[33] 徐正玉,杨海燕,邓居智,等. 基于异常场的地–井瞬变电磁法正演研究[J]. 物探与化探,2015,39(6):1176−1182. XU Zhengyu,YANG Haiyan,DENG Juzhi,et al. Research on forward simulation of down–hole TEM based on the abnormal field[J]. Geophysical & Geochemical Exploration,2015,39(6):1176−1182.

[34] 孟庆鑫,潘和平,马火林. 井中瞬变电磁全区视电阻率解释方法研究[J]. 中国石油大学学报(自然科学版),2015,39(6):72−79. MENG Qingxin,PAN Heping,MA Huolin. Study on interpretation method of all–time apparent resistivity for transient electromagnetic method in borehole[J]. Journal of China University of Petroleum (Edition of Natural Science),2015,39(6):72−79.

[35] 段书新,汪硕,乔宝强,等. 井中瞬变电磁旁测范围初探[J]. 地球物理学进展,2018,33(4):1480−1485. DUAN Shuxin,WANG Shuo,QIAO Baoqiang,et al. Side measurement range of bore hole transient electromagnetic method[J]. Progress in Geophysics,2018,33(4):1480−1485.

[36] 张杰,吕国印,赵敬洗,等. 地–井TEM向量交会技术的实现和应用效果[J]. 物探化探计算技术,2007,29(增刊1):162−165. ZHANG Jie,LYU Guoyin,ZHAO Jingxi,et al. The method of surface borehole TEM vector intersection and its application[J]. Computing Techniques for Geophysical and Geochemical Exploration,2007,29(Sup.1):162−165.

[37] 张杰,邓晓红,郭鑫,等. 地–井TEM在危机矿山深部找矿中的应用实例[J]. 物探与化探,2013,37(1):30−34. ZHANG Jie,DENG Xiaohong,GUO Xin,et al. Typical cases of applying borehole TEM to deep prospecting in crisis mines[J]. Geophysical & Geochemical Exploration,2013,37(1):30−34.

[38] 张杰,邓晓红,谭捍东,等. 地–井瞬变电磁资料矢量交会解释方法[J]. 物探与化探,2015,39(3):572−579. ZHANG Jie,DENG Xiaohong,TAN Handong,et al. A study of vector intersection for borehole transient electromagnetic method[J]. Geophysical & Geochemical Exploration,2015,39(3):572−579.

[39] 杨毅,邓晓红,张杰,等. 一种井中瞬变电磁异常反演方法[J]. 物探与化探,2014,38(4):855−859. YANG Yi,DENG Xiaohong,ZHANG Jie,et al. A borehole TEM anomaly inversion method[J]. Geophysical & Geochemical Exploration,2014,38(4):855−859.

[40] 张杰,王兴春,邓晓红,等. 地–井瞬变电磁井旁板状导体异常响应特征分析[J]. 物探化探计算技术,2014,36(6):641−648. ZHANG Jie,WANG Xingchun,DENG Xiaohong,et al. Borehole transient electromagnetic method response characteristics of the borehole−side plate−like conductor[J]. Computing Techniques for Geophysical and Geochemical Exploration,2014,36(6):641−648.

[41] 杨毅,邓晓红,张杰,等. 一种基于改进型混合遗传算法的地–井TEM多参数反演方法[J]. 物探化探计算技术,2014,36(6):662−667. YANG Yi,DENG Xiaohong,ZHANG Jie,et al. A multi parameter inversion method of borehole TEM based on improved hybrid genetic algorithm[J]. Computing Techniques for Geophysical and Geochemical Exploration,2014,36(6):662−667.

[42] YANG Dikun,DOMINIQUE F,SEOGI K,et al. Deep mineral exploration using multi−scale electromagnetic geophysics:The Lalor massive sulphide deposit case study[J]. Canadian Journal of Earth Sciences,2019,56(5):544−555.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.