Coal Geology & Exploration
Abstract
The overburden thickness and conductivity can affect transient electromagnetic response in shallow subsurface investigation. In order to further verify the overburden detection effect with a conical source device, combining all-time apparent resistivity conversion of transient electromagnetic field, the electromagnetic response characteristics of the underlying strata influenced by the overburden was studied by introducing an Occam inversion with stratum information constraints. The results indicate that electromagnetic response intensity of the target layer is related to the resistivity ratio of the overburden to the target layer. With the overburden resistivity gradually increasing, the resistivity fitting degree between inversed data and real value increases and then decreases. The critical point appears at the moment of the overburden resistivity equaling to the underlying high-resistivity layer. The electromagnetic response of the underlying stratum attenuates with the overburden thickness increases, which leads to the abnormal peak of the electromagnetic response coming earlier, and the inversed resistivity peak depth increasing. Besides, by using constrained stratigraphic inversion, the inversion fitting degree and the layer interface resolution can be improved. The research can provide a theoretical reference to the design of measurement parameters and data processing and interpretation.
Keywords
transient electromagnetic method, conical source, all-time apparent resistivity, overburden, model constraint, Occam inversion
DOI
10.12363/issn.1001-1986.22.01.0023
Recommended Citation
LI Zhe, YANG Haiyan, YUE Jianhua,
et al.
(2022)
"Conical source transient electromagnetic response characteristics with overburden based on Occam constrained inversion,"
Coal Geology & Exploration: Vol. 50:
Iss.
6, Article 20.
DOI: 10.12363/issn.1001-1986.22.01.0023
Available at:
https://cge.researchcommons.org/journal/vol50/iss6/20
Reference
[1] 牛之琏. 时间域瞬变电磁法原理[M]. 长沙:中南大学出版社,2007.
[2] 李金铭. 地电场与电法勘探[M]. 北京:地质出版社,2005.
[3] 张胜业,潘玉玲. 应用地球物理学原理[M]. 武汉:中国地质大学出版社,2004.
[4] 于景邨. 全空间瞬变电磁法在煤矿防治水中的应用[J]. 煤炭科学技术,2011,39(9):110−113. YU Jingcun. Application of full space transient electromagnetic method to mine water prevention and control[J]. Coal Science and Technology,2011,39(9):110−113.
[5] 刘志新. 矿井瞬变电磁场分布规律与应用研究[D]. 徐州:中国矿业大学,2007.
LIU Zhixin. Study on the distribution and application of mine transient electromagnetic field[D]. Xuzhou:China University of Mining and Technology,2007.
[6] 姜志海. 巷道掘进工作面瞬变电磁超前探测机理与技术研究[D]. 徐州:中国矿业大学,2008.
JIANG Zhihai. Study on the mechanism and technology of advanced detection with transient electromagnetic method for roadway drivage face[D]. Xuzhou:China University of Mining and Technology,2008.
[7] YANG Haiyan,LI Fengping,YUE Jianhua,et al. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. Applied Geophysics,2017,14(1):165−174.
[8] 李锋平. 瞬变电磁法圆锥型场源响应特征理论研究[D]. 南昌:东华理工大学,2017.
LI Fengping. Theoretical study on response characteristics of cone-shaped field source in transient electromagnetic method[D]. Nanchang:East China University of Technology,2017.
[9] YANG Haiyan,LI Fengping,CHEN Shen’en,et al. An inversion of transient electromagnetic data from a conical source[J]. Applied Geophysics,2018,15(3/4):545−555.
[10] 杨海燕,刘志新,张华,等. 圆锥型场源瞬变电磁法试验研究[J]. 煤田地质与勘探,2021,49(6):107−112. YANG Haiyan,LIU Zhixin,ZHANG Hua,et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration,2021,49(6):107−112.
[11] 石显新,闫述,陈明生. 瞬变电磁勘探中的低阻层屏蔽问题[J]. 煤炭学报,2005,30(2):160−163. SHI Xianxin,YAN Shu,CHEN Mingsheng. Study on screening of conductive bed in transient electromagnetic prospecting[J]. Journal of China Coal Society,2005,30(2):160−163.
[12] 侯彦威,徐亚飞. 低阻覆盖层下深部富水区的TEM探测效果[J]. 物探与化探,2013,37(4):715−719. HOU Yanwei,XU Yafei. The effect of the transient electromagnetic method in detecting deep water-rich area under low resistivity layer[J]. Physical and Geochemical Exploration,2013,37(4):715−719.
[13] 杨海燕,徐正玉,岳建华,等. 覆盖层下三维板状体地-井瞬变电磁响应[J]. 物探与化探,2016,40(1):190−196. YANG Haiyan,XU Zhengyu,YUE Jianhua,et al. 3D inclined conductor behavior of down-hole transient electromagnetic method with overburden layer[J]. Geophysical and Geochemical Exploration,2016,40(1):190−196.
[14] 杨海燕,岳建华,徐正玉,等. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版),2016,46(5):1527−4537. YANG Haiyan,YUE Jianhua,XU Zhengyu,et al. Transient electromagnetic method modeling in ground-borehole model with over-burden influence[J]. Journal of Jilin University (Earth Science Edition),2016,46(5):1527−4537.
[15] COMMER M,NEWMAN G A. New advances in three-dimensional controlled-source electromagnetic inversion[J]. Geophysical Journal of the Royal Astronomical Society,2010,172(2):513−535.
[16] 王学知. 低阻覆盖层隐蔽水源全空间瞬变电磁响应特征研究及应用[D]. 徐州:中国矿业大学,2018.
WANG Xuezhi. Study and application of full space Transient Electromagnetic response characteristics of concealed water source with low resistance coverage[D]. Xuzhou:China University of Mining and Technology,2018.
[17] 杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628. YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628.
[18] 王华军. 时间域瞬变电磁法全区视电阻率的平移算法[J]. 地球物理学报,2008,51(6):1936−1942. WANG Huajun. Time domain transient electromagnetism all time apparent resistivity translation algorithm[J]. Chinese Journal of Geophysics,2008,51(6):1936−1942.
[19] KAUFMAN A A,EATON P A. The theory of inductive prospecting[M]. Elsevier Science Limited,2001.
[20] 杨海燕,邓居智,汤洪志,等. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版),2014,44(3):1012−1017. YANG Haiyan,DENG Juzhi,TANG Hongzhi,et al. Translation algorithm of data interpretation technique in full-space transient electromagnetic method[J]. Journal of Jilin University (Earth Science Edition),2014,44(3):1012−1017.
[21] 陈卫营,李海,薛国强,等. SOTEM数据一维OCCAM反演及其应用于三维模型的效果[J]. 地球物理学报,2017,60(9):3667−3676. CHEN Weiyng,LI Hai,XUE Guoqiang,et al. 1D OCCAM inversion of SOTEM data and its application to 3D models[J]. Chinese Journal of Geophysics,2017,60(9):3667−3676.
[22] CONSTABLE S C,PARKER R L,CONSTABLE C G. Occam’s inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics,1987,52(3):289−300.
[23] KLITYŃSKI W,ORYŃSKI S,DINH C N. Application of the conductive method in the engineering geology:Ruczaj district in Kraków,Poland,as a case study[J]. Acta Geophysica,2019,67(6):1791−1798.
[24] TRINAKOON S,VACHIRATIANCHAI C,AMATYKUL P,et al. Comparing performance of multi-frequency bands Occam’s receiver function inversion to standard linearized receiver function inversion[J]. Journal of Physics:Conference Series,2019,1380(1):012061.
[25] 肖俊,叶益信,薛海军,等. 基于非结构有限元的带地形海洋可控源电磁法二维Occam反演[J]. 工程地球物理学报,2020,17(2):217−224. XIAO Jun,YE Yixin,XUE Haijun,et al. Two-dimensional Occam inversion of marine controlled-source electromagnetic method in terrain based on unstructured finite element method[J]. Chinese Journal of Engineering Geophysics,2020,17(2):217−224.
[26] 侯彦威. TEM探测深部煤层上覆多电性层的OCCAM反演[J]. 煤田地质与勘探,2018,46(6):169−173. HOU Yanwei. OCCAM inversion for detecting overlying multiple electrical layers above deep coal seams by TEM[J]. Coal Geology & Exploration,2018,46(6):169−173.
[27] 路俊涛,雷达,任浩,等. 航空瞬变电磁数据光滑拟二维反演[J]. 地球物理学进展,2021,36(4):1573−1580. LU Juntao,LEI Da,REN Hao,et al. Smooth quasi-2D inversion of airborne transient electromagnetic data[J]. Progress in Geophysics,2021,36(4):1573−1580.
[28] RAICHE A P,SPIES B R. Coincident loop transient electromagnetic master curves for interpretation of two-layer earths[J]. Geophysics,1981,46(1):53−64.
[29] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州:中国矿业大学出版社,2007.
[30] 汤洪志. 勘查技术与工程专业教学实习指导书[M]. 南昌:东华理工大学出版社,2003.
[31] 马王鹏. AEMT数据的采集及反演[D]. 南昌:东华理工大学,2018.
MA Wangpeng. AEMT data collection and inversion[D]. Nanchang:East China University of Technology,2018.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons