•  
  •  
 

Coal Geology & Exploration

Abstract

To study the influence of casing, casing bit size and casing rotational speed on pulverized coal discharge in double pipe directional drilling technology, three kinds of casing and casing bits in different sizes are designed respectively against the background of pneumatic double pipe directional drilling in the broken soft coal seam, the changes of the discharge rate and outlet velocity of pulverized coal under different combinations are analyzed, and the influence law of different casing rotational speeds on the suspension rate and conveying trajectory of pulverized coal are obtained. The numerical simulation results show that the ø120/96 mm casing with different casing bits has a high pulverized coal discharge rate. The conveying speed of pulverized coal decreases with the increase of the total cross-sectional area of the annular channel and increases with the increase of the cross-sectional area of the inner channel. The suspension degree of pulverized coal first increases and then decreases with the increase of casing rotational speed. Based on this, field tests are carried out to compare and analyze the effects of the powder carrying capacity of different casing combinations and changes of the casing rotational speed on pulverized coal discharge. The combination of the ø140 mm casing bit and ø120/96 mm casing achieves the maximum drilling depth at the casing rotational speed of 40 r/min. The research results provide technical reference for the selection of double pipe directional drilling parameters and the selection and development of drilling equipment for broken soft coal seams.

Keywords

broken soft coal seam, pneumatic double pipe, directional drilling, pulverized coal carrying

DOI

10.12363/issn.1001-1986.21.12.0789

Reference

[1] 胡省三,成玉琪. 21世纪前期我国煤炭科技重点发展领域探讨[J]. 煤炭学报,2005,30(1):1−7. HU Shengsan,CHENG Yuqi. Discussions on key development fields of China’s coal science and technology at early stage of 21st century[J]. Journal of China Coal Society,2005,30(1):1−7.

[2] 刘春. 松软煤层瓦斯抽采钻孔塌孔失效特性及控制技术基础[D]. 徐州:中国矿业大学,2014.

LIU Chun. Study on mechanism and controlling of borehole collapse in soft coal seam[D]. Xuzhou:China University of Mining and Technology,2014.

[3] 刘建林,方俊,褚志伟,等. 碎软煤层空气泡沫复合定向钻进技术应用研究[J]. 煤田地质与勘探,2021,49(5):278−285. LIU Jianlin,FANG Jun,CHU Zhiwei,et al. Application of air foam composite directional drilling technology in broken soft coal seams[J]. Coal Geology & Exploration,2021,49(5):278−285.

[4] 李浩,梁卫国,李国富,等. 碎软煤层韧性破坏–渗流耦合本构关系及其间接压裂工程验证[J]. 煤炭学报,2021,46(3):924−936. LI Hao,LIANG Weiguo,LI Guofu,et al. Ductile failure–seepage coupling constitutive equations of broken soft coal and its verification in indirect fracturing engineering[J]. Journal of China Coal Society,2021,46(3):924−936.

[5] 梁道富,曹建明,代茂,等. 贵州青龙煤矿碎软煤层区域瓦斯递进式抽采技术[J]. 煤田地质与勘探,2020,48(5):48−52. LIANG Daofu,CAO Jianming,DAI Mao,et al. Progressive gas extraction technology in broken soft coal seam of Qinglong coal mine,Guizhou Province[J]. Coal Geology & Exploration,2020,48(5):48−52.

[6] 郝世俊,殷新胜,方俊. 煤矿井下碎软煤层瓦斯抽采钻孔钻进工艺[C]//中国地质学会. 第二十一届全国探矿工程(岩土钻掘工程)学术交流年会论文集. 中国地质学会:中国地质学会探矿工程专业委员会,2021:173–180.

[7] 冀前辉,董萌萌,刘建林,等. 煤矿井下碎软煤层泡沫钻进技术及应用[J]. 煤田地质与勘探,2020,48(2):25−29. JI Qianhui,DONG Mengmeng,LIU Jianlin,et al. Foam drilling technology and application for broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration,2020,48(2):25−29.

[8] 李玉刚. 松软煤层钻进的关键技术研究[D]. 贵阳:贵州大学,2015.

LI Yugang. Research on key technologies of drilling in soft coal seam[D]. Guiyang:Guizhou University,2015.

[9] 殷新胜,刘建林,冀前辉. 松软煤层中风压空气钻进技术与装备[J]. 煤矿安全,2012,43(7):63−65. YIN Xinsheng,LIU Jianlin,JI Qianhui. Medium wind pressure air drilling technique and equipments in soft coal seam[J]. Safety in Coal Mines,2012,43(7):63−65.

[10] 李泉新. 碎软煤层复合定向钻进技术研究与应用[J]. 煤炭科学技术,2018,46(11):101−106. LI Quanxin. Research and application of drilling technology combined rotary with direction in soft−fragmentized coal seam[J]. Coal Science and Technology,2018,46(11):101−106.

[11] 张杰,王毅,黄寒静,等. 空气螺杆马达软煤定向成孔技术研究[J]. 煤炭科学技术,2018,46(11):114−118. ZHANG Jie,WANG Yi,HUANG Hanjing,et al. Research on directional drilling technology of air srew motor in soft coal seam[J]. Coal Science and Technology,2018,46(11):114−118.

[12] 方俊,刘飞,李泉新,等. 煤矿井下碎软煤层空气复合定向钻进技术与装备[J]. 煤炭科学技术,2019,47(2):224−229. FANG Jun,LIU Fei,LI Quanxin,et al. Air compound directional drilling technology and equipment for soft–fragmentized seam underground coal mine[J]. Coal Science and Technology,2019,47(2):224−229.

[13] 王力,姚宁平,姚亚峰,等. 煤矿井下碎软煤层顺层钻完孔技术研究进展[J]. 煤田地质与勘探,2021,49(1):285−296. WANG Li,YAO Ningping,YAO Yafeng,et al. Research progress of drilling and borehole completion technologies in broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration,2021,49(1):285−296.

[14] 李良伟,武文宾,唐建平. 钻杆类型对松软煤层顺层钻孔排渣的影响[J]. 煤矿安全,2020,51(5):122−125. LI Liangwei,WU Wenbin,TANG Jianping. Influence of drill pipe type on drilling and slagging in soft coal seam[J]. Safety in Coal Mines,2020,51(5):122−125.

[15] 魏宏超,王毅,王博. 冲击地压煤层大直径卸压孔快速成孔关键技术[J]. 煤田地质与勘探,2020,48(2):20−24. WEI Hongchao,WANG Yi,WANG Bo. Key technology for rapidly drilling large diameter distressing−drillhole in rock burst coal seam[J]. Coal Geology & Exploration,2020,48(2):20−24.

[16] 杨洪雷,靳世平,刘小康. 煤粉气力输送过程中采用不同输送管径的数值模拟研究[J]. 工业加热,2015,44(4):62−64. YANG Honglei,JIN Shiping,LIU Xiaokang. The numerical simulation of pulverized coal pneumatic conveying with different−diameter conveying pipeline[J]. Industrial Heating,2015,44(4):62−64.

[17] 王巍,管清亮,张建胜. 水平管煤粉气力输送流型实验研究[J]. 中国粉体技术,2014,20(6):21−24. WANG Wei,GUAN Qingliang,ZHANG Jiansheng. Experimental study on flow patterns in horizontal pneumatic conveying of pulverized coal powders[J]. China Powder Science and Technology,2014,20(6):21−24.

[18] 方薪晖,安海泉,刘臻,等. 煤粉气力输送管道压降的工艺模拟[J]. 煤炭学报,2021,46(增刊1):477−485. FANG Xinhui,AN Haiquan,LIU Zhen,et al. Simulation and analysis for pressure drop of pneumatic conveying of pulverized coal[J]. Journal of China Coal Society,2021,46(Sup.1):477−485.

[19] 孙利海. 碎软煤层空气定向钻进工艺最小供风流量[J]. 煤矿安全,2021,52(7):175−180. SUN Lihai. Minimum wind flow of air directional drilling technology in soft–fragmentized coal seam[J]. Safety in Coal Mines,2021,52(7):175−180.

[20] 冀前辉. 煤矿井下碎软煤层泡沫钻进关键技术研究[D]. 北京:煤炭科学研究总院,2020.

JI Qianhui. Research on key technology of foam drilling in underground broken soft coal seam[D]. Beijing:China Coal Research Institute,2020.

[21] 薛斐. 水力冲孔煤层增透机理及应用研究[D]. 北京:中国矿业大学(北京),2018.

XUE Fei. Study on pressure relief mechanism of hydraulic flushing in coal seams and its application[D]. Beijing:China University of Mining and Technology(Beijing),2018.

[22] 李泉新. 煤矿井下复合定向钻进及配套泥浆脉冲无线随钻测量技术研究[D]. 北京:煤炭科学研究总院,2018.

LI Quanxin. Research on technology of drilling combined rotary with direction and related mud pulse MWD[D]. Beijing:China Coal Research Institute,2018.

[23] 梁俊红. 煤层气径向井成井技术研究[D]. 北京:中国石油大学(北京),2016.

LIANG Junhong. The research of radial well technique in coal−bed methane[D]. Beijing:China University of Petroleum(Beijing),2016.

[24] 黄振宇. 旋流效应下喷动床内气固两相流动规律数值模拟[D]. 西安:西北大学,2019.

HUANG Zhenyu. Numerical simulation of gas–solid two–phase flow in spouted bed under swirling effect[D]. Xi’an:Northwest University,2019.

[25] 张显雄,张志田,张伟峰,等. 五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究[J]. 空气动力学学报,2018,36(2):339−349. ZHANG Xianxiong,ZHANG Zhitian,ZHANG Weifeng,et al. Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two–dimensional square cylinder[J]. Acta Aerodynamica Sinica,2018,36(2):339−349.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.