Coal Geology & Exploration
Abstract
The advance and accurate identification of the coal-rock interface is one of the key technologies to realize automatic tunneling and intellectualization of coal mines. Azimuth electromagnetic wave tool has a large detection range and can distinguish the lithologic interface and interface orientation. It has been successfully applied in oilfield logging, but there are few researches on the coal mine measurement environment. In order to study the detection performance of azimuth electromagnetic wave logging in the complex 3D model of coal mines, the finite element numerical simulation method is used to investigate the influence of the drilling fluid in the borehole on azimuth electromagnetic wave logging with different transmission frequency and spacing in the coal mine measuring environment, and the influence of the mined-out area and the stratigraphic boundary on the azimuth electromagnetic wave measurement. The results show that the azimuth electromagnetic wave response is less affected by the borehole when the fluid in the borehole is air. The azimuth electromagnetic wave measurement signal can reflect the fluctuation of the stratum interface, and its detection ability is related to the transmission frequency and spacing. The azimuth electromagnetic wave is sensitive to the low-resistance goaf, but a phase difference signal can be used to detect high-resistance goaf in high-frequency transmission. The azimuth electromagnetic wave method provides a new technical means for the measurement of the coal-rock interface and goaf in the horizontal hole of coal mines, which has great application potential.
Keywords
azimuth electromagnetic wave logging, coal-rock interface, 3D model, horizontal hole, forward modeling
DOI
10.12363/issn.1001-1986.21.12.0854
Recommended Citation
ZHANG Yi, KANG Zhengming, FENG Hong,
et al.
(2022)
"Numerical simulation of azimuth electromagnetic wave response of complex geological model of horizontal hole in coal mines,"
Coal Geology & Exploration: Vol. 50:
Iss.
5, Article 16.
DOI: 10.12363/issn.1001-1986.21.12.0854
Available at:
https://cge.researchcommons.org/journal/vol50/iss5/16
Reference
[1] 葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774−788. GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774−788.
[2] 张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363−3370. ZHANG Qiang,SUN Shao’an,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363−3370.
[3] 吴德忠,刘泉声,黄兴,等. 基于边界跟踪和神经网络的煤岩界面识别方法研究[J]. 煤炭工程,2021,53(6):140−146. WU Dezhong,LIU Quansheng,HUANG Xing,et al. Coal–rock interface recognition method based on boundary tracking algorithm and artificial neural network[J]. Coal Engineering,2021,53(6):140−146.
[4] 李力,刘佳鹏,魏伟. 基于经验小波变换的煤岩界面识别超声回波处理方法研究[J]. 煤炭学报,2019,44(Sup.1):370−377. LI Li,LIU Jiapeng,WEI Wei. Signal processing method on ultrasonic echo from coal–rock interface based on EWT[J]. Journal of China Coal Society,2019,44(Sup.1):370−377.
[5] 王莉,苏波. 综采工作面煤岩界面识别方法研究[J]. 中国设备工程,2020,11(1):215−216. WANG Li,SU Bo. Study on identification method of coal–rock interface in fully mechanized mining face[J]. China Plant Engineering,2020,11(1):215−216.
[6] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914−922. WANG Lei,FAN Yiren,YUAN Chao,et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling(LWD)[J]. Petroleum Exploration and Development,2018,45(5):914−922.
[7] 胡旭飞,范宜仁,吴非,等. 随钻方位电磁波测井多参数快速反演[J]. 地球物理学报,2018,61(11):4690−4701. HU Xufei,FAN Yiren,WU Fei,et al. Fast multiple parameter inversion of azimuthal LWD electromagnetic measurement[J]. Chinese Journal of Geophysics,2018,61(11):4690−4701.
[8] 张意,冯宏,韩雪,等. 石油电磁测井技术发展中的一些关键问题[J]. 石油地球物理勘探,2021,56(6):1430−1447. ZHANG Yi,FENG Hong,HAN Xue,et al. Key problems in the development of petroleum electromagnetic logging[J]. Oil Geophysical Prospecting,2021,56(6):1430−1447.
[9] ZHU Mengbo,CHENG Jianyuan,ZHANG Zheng. Quality control of microseismic P–phase arrival picks in coal mine based on machine learning[J]. Computers and Geosciences,2021,156:104862.
[10] ZHU Mengbo,CHENG Jianyuan,CUI Weixiong,et al. Comprehensive prediction of coal seam thickness by using in–seam seismic surveys and Bayesian kriging[J]. Acta Geophysica,2019,67(4):825−836.
[11] 王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715−1724. WANG Lei,FAN Yiren,CAO Yingchang,et al. Real–time inversion of logging−while−drilling azimuthal electromagnetic measurements acquired in high−angle and horizontal wells[J]. Chinese Journal of Geophysics,2020,63(4):1715−1724.
[12] 王磊. 深探测多分量随钻电磁波测井理论与正反演研究[D]. 青岛:中国石油大学(华东),2018.
WANG Lei. Deep−detection multi−component logging−while−drilling electromagnetic logging:Theory,forward modeling and inversion/data processing[D]. Qingdao:China University of Petroleum(East China),2018.
[13] 王健,陈浩,王秀明,等. 有限元感应测井模拟的背景场选择方法研究[J]. 地球物理学报,2015,58(6):2177−2187. WANG Jian,CHEN Hao,WANG Xiuming,et al. Research on selection method of background field for finite element simulation of induction logging[J]. Chinese Journal of Geophysics,2015,58(6):2177−2187.
[14] 王健,陈浩,王秀明. 用于固体矿床多分量感应测井响应模拟的矢量有限元法[J]. 地球物理学报,2016,59(1):355−367. WANG Jian,CHEN Hao,WANG Xiuming. Response modeling of multi–component induction logging tool in the mineral logging using vector finite element[J]. Chinese Journal of Geophysics,2016,59(1):355−367.
[15] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206. CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.
[16] CHEN Gang,FAN Yiren,LI Quanxin. A study of coalbed methane(CBM) reservoir boundary detections based on azimuth electromagnetic waves[J]. Journal of Petroleum Science and Engineering,2019,179:432−443.
[17] CHEN Gang,FAN Yiren,LI Quanxin. Using an azimuth electromagnetic wave imaging method to detect and characterize coal–seam interfaces and low–resistivity anomalies[J]. Journal of Environmental and Engineering Geophysics,2020,25(1):75−87.
[18] 张意,康正明,冯宏,等. 水平井煤岩界面方位电磁波测井仪器探测性能[J]. 煤田地质与勘探,2022,50(2):140−149. ZHANG Yi,KANG Zhengming,FENG Hong,et al. Detection performance of the azimuthal electromagnetic wave logging instrument at coal–rock interface in horizontal wells[J]. Coal Geology & Exploration,2022,50(2):140−149.
[19] 其木苏荣,赵永芳,井孝功. 偶极子在径向非均匀介质中的电磁场分布[J]. 大学物理,2004,23(8):16−19. QIMU Surong,ZHAO Yongfang,JING Xiaogong. The electromagnetic field of MD in radial inhomogeneous medium[J]. College Physics,2004,23(8):16−19.
[20] 仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105−112. WU Jie,REN Yaoyu,HE Qiuli,et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2021,36(1):105−112.
[21] 许巍,柯式镇,李安宗,等. 随钻电磁波测井仪器结构影响的三维有限元模拟[J]. 中国石油大学学报(自然科学版),2016,40(6):50−56. XU Wei,KE Shizhen,LI Anzong,et al. Structural effects analysis of an electromagnetic wave propagation resistivity LWD tool by 3D finite element method[J]. Journal of China University of Petroleum(Natural Science Edition),2016,40(6):50−56.
Click below to download English version.
Numerical simulation of azimuth electromagnetic wave response of complex.pdf (5858 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons