Coal Geology & Exploration
Abstract
The investigation of goafs in the coal mine is a major technical problem that restricts the normal engineering construction and safe operation of the upper site. Looking back at the establishment of coal mine goaf prospecting technical specifications in China, the results obtained in the past three decades are reviewed in the goaf prospecting methods, the deformation prediction, stability evaluation, etc. Some representative problems are pointed out in the current actual investigation work, such as the poor guidance of the investigation outline, the inadequate integration of drilling technical requirements with the investigation work, the inability of engineering geophysical exploration to meet the investigation needs, the insufficient comprehensive analysis of the investigation results, and the lack of in-depth research on special rock and soil problems in the goaf site. In this paper, the future development trend of the standardization of prospecting work and the application of new technologies is prospected from the aspects of high-precision deformation monitoring, fine geophysical exploration, directional drilling and information technology. The direction of further research on geophysical inversion, in-situ test and evaluation, deformation monitoring and early warning of coal mine goafs are proposed, providing reference for the prevention and control of goaf disasters.
Keywords
goaf of coal mine, building and structure site, investigation technology, problem, prospect
DOI
10.12363/issn.1001-1986.21.05.0299
Recommended Citation
L.
(2022)
"Progress in investigation technology for coal mine goafs under buildings and structures in China,"
Coal Geology & Exploration: Vol. 50:
Iss.
4, Article 19.
DOI: 10.12363/issn.1001-1986.21.05.0299
Available at:
https://cge.researchcommons.org/journal/vol50/iss4/19
Reference
[1] 孙忠弟. 高等级公路下伏空洞勘探、危害程度评价及处治研究报告集[R]. 北京:科学出版社,2000.
[2] 孙忠弟. 高速公路采空区(空洞)勘察设计与施工治理手册[M]. 北京:人民交通出版社,2005.
[3] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 煤矿采空区岩土工程勘察规范:GB 51044—2014[S]. 北京:中国计划出版社,2014.
[4] 中华人民共和国交通运输部. 采空区公路设计与施工技术细则:JTG/ T D31–03–2011[S]. 北京:人民交通出版社,2011.
[5] 中国地质灾害防治工程行业协会. 采空塌陷勘查规范:T/CAGHP005[S]. 北京:中国地质大学出版社,2018.
[6] 国家铁路局. 铁路隧道设计规范:TB 10003–2016[S]. 北京:中国铁道出版社,2016.
[7] 国家铁路局. 铁路瓦斯隧道技术规范:TB 10120–2019[S]. 北京:中国铁道出版社,2019.
[8] 中华人民共和国铁道部. 铁路工程不良地质勘察规程:TB 10027–2012[S]. 北京:中国铁道出版社,2012.
[9] 李有能. 综合物探方法在东都煤田采空区中的应用[J]. 工程地球物理学报,2011,8(3):358−361. LI Youneng. Application of integrated geophysical survey to Dongdu coal gob[J]. Chinese Journal of Engineering Geophysics,2011,8(3):358−361.
[10] 潘瑞林. 采空区物探方法新探[J]. 铁道勘察,2010,36(6):23−26. PAN Ruilin. New approaches of geophysical exploration for mining zone[J]. Railway Investigation and Surveying,2010,36(6):23−26.
[11] 李娟娟,潘冬明,胡明顺,等. 煤矿采空区探测的几种工程物探方法的应用[J]. 工程地球物理学报,2009,6(6):728−732. LI Juanjuan,PAN Dongming,HU Mingshun,et al. Application of geophysical methods in detecting coal mined–out areas[J]. Chinese Journal of Engineering Geophysics,2009,6(6):728−732.
[12] 袁江华,谢向文,薛云峰. 小浪底水库库区煤矿采空区的地球物理探测[J]. 勘察科学技术,2002(2):62−64. YUAN Jianghua,XIE Xiangwen,XUE Yunfeng. The geophysical prospecting of mined coal zone in Xiaolangdi reservoir area[J]. Site Investigation Science and Technology,2002(2):62−64.
[13] 梁建平,王树仁,曹海莹. 穿越采空区公路隧道地表沉陷变形预测分析[J]. 路基工程,2009(3):30−32. LIANG Jianping,WANG Shuren,CAO Haiying. Prediction analysis of surface subsidence deformation of highway tunnel crossing goaf[J]. Subgrade Engineering,2009(3):30−32.
[14] 曾开华,张国锋,杨晓杰. 门头沟多层采空区地基稳定性及变形预测研究[J]. 中国矿业,2010,19(10):87−90. ZENG Kaihua,ZHANG Guofeng,YANG Xiaojie. Review on stability and deformation prediction of ground base underlying multi–layer goaf in Mentougou area[J]. China Mining Magazine,2010,19(10):87−90.
[15] 林庆元. 望儿山金矿地表变形资料分析与沉降预测[D]. 青岛:山东科技大学,2009.
LIN Qingyuan. The data analysis of surface deformation and subsidence prediction of Wangershan Gold mining area[D]. Qingdao:Shandong University of Science and Technology,2009.
[16] 邓云叶. 应用属性数学理论的采空区地基稳定性评价[J]. 测绘科学,2011,36(4):48−49. DENG Yunye. Assessment of goaf foundation stability based on attribute mathematical theory[J]. Science of Surveying and Mapping,2011,36(4):48−49.
[17] 滕永海,张俊英. 老采空区地基稳定性评价[J]. 煤炭学报,1997,22(5):504−508. TENG Yonghai,ZHANG Junying. Evaluation on stability of building foundation over goafs[J]. Journal of China Coal Society,1997,22(5):504−508.
[18] 王存煜,郑贵. 老采空区上建住宅楼问题的探讨[J]. 煤炭工程,2004(10):61−62. WANG Cunyu,ZHENG Gui. Discussion on building residential buildings above old goaf[J]. Coal Engineering,2004(10):61−62.
[19] 方军. 浅埋藏煤层上方地基稳定性评价探讨[J]. 矿山测量,2011(3):85−87. FANG Jun. Discussion on stability evaluation of foundation over shallow buried coal seam[J]. Mine Surveying,2011(3):85−87.
[20] 中煤科工集团西安研究院有限公司. 咸阳市亭口水库采空区专题研究报告[R]. 西安:中煤科工集团西安研究院有限公司,2017.
[21] 中煤科工集团西安研究院有限公司. 子长红石峁水库坝基采空区勘察与治理工程设计[R]. 西安:中煤科工集团西安研究院有限公司,2018.
[22] 中煤科工集团西安研究院有限公司. 合凤高速小河沟特大桥采空区治理工程优化设计[R]. 西安:中煤科工集团西安研究院有限公司,2020.
[23] 中煤科工集团西安研究院有限公司. 济宁任城区采煤沉陷区勘察与治理工程设计[R]. 西安:中煤科工集团西安研究院有限公司,2019.
[24] 刘小平,陈占国,刘永华,等. 基于慢度矢量与偏振矢量的采动裂隙岩体各向异性研究[J]. 岩石力学与工程学报,2020,39(增刊2):3348−3358. LIU Xiaoping,CHEN Zhanguo,LIU Yonghua,et al. Anisotropy research of excavated fractured rock mass based on slowness vector and polarization vector[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup.2):3348−3358.
[25] 中煤科工集团西安研究院有限公司. 济宁市任城区采煤沉陷区综合治理及其土地一二级联动开发项目高密度三维地震资料反演解释技术研究[R]. 西安:中煤科工集团西安研究院有限公司,2019.
[26] 刘小平. 各向异性岩体弹性矩阵系数反演分析与应用[J]. 岩石力学与工程学报,2021,40(9):1826−1838. LIU Xiaoping. Inversion technique and engineering application of elastic matrix coefficients for anisotropic rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1826−1838.
[27] 中煤科工集团西安研究院有限公司. 宝日希勒露天煤矿采空区专项勘察与治理研究报告[R]. 西安:中煤科工集团西安研究院有限公司,2015.
[28] 中煤科工集团西安研究院有限公司. HJD隧道采空区防治专项研究报告[R]. 西安:中煤科工集团西安研究院有限公司,2020.
[29] 刘彬,李锋,曹善宏,等. 超高密度电法在采空区勘探中的应用研究[J]. 能源与环保,2019,41(12):61−67. LIU Bin,LI Feng,CAO Shanhong,et al. Application research of ultra–high density electrical method in goaf exploration[J]. China Energy and Environmental Protection,2019,41(12):61−67.
[30] 朱红娟. 三维地震属性解释技术在巷道探测中的应用[J]. 煤田地质与勘探,2015,43(4):90−93. ZHU Hongjuan. Application of 3D seismic attribute interpretation technology in the detection of roadway[J]. Coal Geology & Exploration,2015,43(4):90−93.
[31] 罗昊,何刚,周凯. 地质雷达环向探测在隧道煤层采空区段的应用研究[J]. 建筑技术开发,2016,43(10):69−71. LUO Hao,HE Gang,ZHOU Kai. Application of ground penetrating radar circumferential detection in coal gob section of tunnel[J]. Building Technology Development,2016,43(10):69−71.
[32] 姚伟华,王鹏,李明星,等. 地孔瞬变电磁法超前探测数值模拟响应特征[J]. 煤炭学报,2019,44(10):3145−3153. YAO Weihua,WANG Peng,LI Mingxing,et al. Numerical simulation response characteristics of down–hole TEM for advanced detection[J]. Journal of China Coal Society,2019,44(10):3145−3153.
[33] 胡国新,苏建军,赵楠. 三维激光扫描技术在平朔露天矿采空区探测中的应用[J]. 露天采矿技术,2015(7):62−64. HU Guoxin,SU Jianjun,ZHAO Nan. Application of three dimensional laser scanning technology in Pingshuo Open–pit mine goaf detection[J]. Opencast Mining Technology,2015(7):62−64.
[34] 吴峻,汤钧元,洪小波. 高速磁浮轨道垂向不平顺动态检测系统设计[J]. 同济大学学报(自然科学版),2018,46(5):626−630. WU Jun,TANG Junyuan,HONG Xiaobo. Dynamic measurement system design for vertical irregularity of high speed maglev track[J]. Journal of Tongji University(Natural Science),2018,46(5):626−630.
[35] 步东亮,王云龙. 基于BOTDA技术的深部开采岩层内部应力演化规律研究[J]. 矿山测量,2021,49(4):20−29. BU Dongliang,WANG Yunlong. Research on internal stress evolution law of deep mining strata based on BOTDA technology[J]. Mine Surveying,2021,49(4):20−29.
[36] 吕海波. 一种井下自动巡检机器人系统[J]. 现代矿业,2019,35(7):204−205. LYU Haibo. An underground mine automatic inspection robot system[J]. Modern Mining,2019,35(7):204−205.
[37] 邓锟. 神府矿区采空区塌陷IKONOS遥感影像特征[J]. 能源环境保护,2016,30(3):54−56. DENG Kun. Characteristics of IKONOS remote sensing image of collapse of mined out area at Shenfu coal area[J]. Energy Environmental Protection,2016,30(3):54−56.
[38] 卜璞,李朝奎,杨文涛,等. D–InSAR与最优化算法的采空区几何参数反演[J]. 测绘科学,2021,46(5):143−152. BU Pu,LI Chaokui,YANG Wentao,et al. Inversion of goaf geometric parameters based on D−InSAR and optimization algorithm[J]. Science of Surveying and Mapping,2021,46(5):143−152.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons