Coal Geology & Exploration


With the development and application of intelligent drilling machine, the lithology data of blasting borehole can be obtained accurately. The blast-hole database is established to store and manage the intelligently identified blast-hole data. Taking the rock property data of blast hole as the sample, the inverse distance square method is used to interpolate the solid elements within the blasting area to generate the 3D solid model of blasting rock mass. The 3D solid model of rock mass was cut by using the polygon of blasting area and the triangular network of bench, and then the 3D solid model of blasting rock mass was obtained. C++ programming is used to realize all the process of establishing 3D solid model of blasting rock mass. Taking 918 bench blasting of an open pit mine in Xilinhot, Inner Mongolia as an example, the 3D solid model of rock mass in the blasting area is established. The blasting charge calculated by the three-dimensional rock mass model in this area is compared with that calculated by the single hole rock property. The results show that the blasting cost is effectively reduced and the blasting efficiency is improved by calculating the blasting charge by the three-dimensional rock mass model.


blasting rock mass, 3D modelling, lithology identification, intelligent drilling machine




[1] 李志成,夏阳. 露天开采[M]. 昆明:云南大学出版社,2009.

[2] 杨永琦. 矿山爆破技术与安全[M]. 北京:煤炭工业出版社,1991.

[3] 冀晓伟. 露天矿台阶爆破三维数字化设计系统研究[D]. 西安:西安建筑科技大学,2011.

JI Xiaowei. Research on 3D digitization bench blasting design system of open–pit mine[D]. Xi’an:Xi’an University of Architecture and Technology,2011.

[4] 吴立新,殷作如,邓智毅,等. 论21世纪的矿山:数字矿山[J]. 煤炭学报,2000,25(4):337−342. WU Lixin,YIN Zuoru,DEND Zhiyi,et al. Research to the mine in the 21st century:Digital mine[J]. Journal of China Coal Society,2000,25(4):337−342.

[5] 张志毅,杨年华,卢文波,等. 中国爆破振动控制技术的新进展[J]. 爆破,2013,30(2):25−32. ZHANG Zhiyi,YANG Nianhua,LU Wenbo,et al. Progress of blasting vibration control technology in China[J]. Blasting,2013,30(2):25−32.

[6] 段云,熊代余,徐国权. 钻孔数字化与钻孔岩性自动识别技术[J]. 金属矿山,2015(10):125−129. DUAN Yun,XIONG Daiyu,XU Guoquan. A new technology for digital drilling and automatic lithology identification[J]. Metal Mine,2015(10):125−129.

[7] 李明超,符家科,张野,等. 耦合岩石图像与锤击音频的岩性分类智能识别分析方法[J]. 岩石力学与工程学报,2020,39(5):996−1004. LI Mingchao,FU Jiake,ZHANG Ye,et al. Intelligent recognition and analysis method of rock lithology classification based on coupled rock images and hammering audios[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):996−1004.

[8] 韩启迪,张小桐,申维. 基于梯度提升决策树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报,2018,37(6):1173−1180. HAN Qidi,ZHANG Xiaotong,SHEN Wei. Lithology identification technology based on gradient boosting decision tree(GBDT) algorithm[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2018,37(6):1173−1180.

[9] SONG Renbo,QIN Xiaoqian,TAO Yeqing,et al. A semi−automatic method for 3D modeling and visualizing complex geological bodies[J]. Bulletin of Engineering Geology and the Environment,2019,78(3):1371−1383.

[10] CHE Defu,JIA Qingren. Three−dimensional geological modeling of coal seams using weighted Kriging method and multi−source data[J]. IEEE Access,2019(99):1.

[11] 李璐,刘新根,吴蔚博. 基于钻孔数据的三维地层建模关键技术[J]. 岩土力学,2018,39(3):1056−1062. LI Lu,LIU Xingen,WU Weibo. Key technology of 3D stratum modelling based on borehole data[J]. Rock and Soil Mechanics,2018,39(3):1056−1062.

[12] 贾立娟. 基于钻孔数据的三维地质建模插值算法研究[D]. 北京:中国地质大学(北京),2018.

JIA Lijuan. Research on 3D geological modeling interpolation algorithm based on drilling data[D]. Beijing:China University of Geosciences(Beijing),2018.

[13] 唐丙寅,吴冲龙,李新川,等. 一种基于钻孔地质数据的快速递进三维地质建模方法[J]. 岩土力学,2015,36(12):3633−3638. TANG Bingyin,WU Chonglong,LI Xinchuan,et al. A fast progressive 3D geological modeling method based on borehole data[J]. Rock and Soil Mechanics,2015,36(12):3633−3638.

[14] 任占营. 露天矿爆破智能设计与模拟优化系统研发与应用研究[D]. 北京:中国矿业大学(北京),2016.

REN Zhanying. Research on the development and application of open pit mine intelligent design and simulative optimization system[D]. Beijing:China University of Mining and Technology(Beijing),2016.

[15] 邹林志,任光明,杨曦璃. 基于ArcGIS空间插值分析的三维地质可视化[J]. 世界有色金属,2020(19):195−196. ZOU Linzhi,REN Guangming,YANG Xili. Research of 3D geological visualization method based on ArcGIS space interpolation analysis[J]. World Nonferrous Metals,2020(19):195−196.

[16] 张琳娜,樊隽轩,侯旭东,等. 地层数据的常用空间插值方法介绍和比较分析:以上扬子区宝塔组厚度重建为例[J]. 地层学杂志,2016,40(4):420−428. ZHANG Linna,FAN Junxuan,HOU Xudong,et al. Comparison of common spatial interpolation methods in stratigraphic data analysis:A case study of the stratigraphic thickness of the Ordovician pagoda formation in the upper Yangtze region[J]. Journal of Stratigraphy,2016,40(4):420−428.

[17] 孙梦楠,刘少华,刘京城. 顾及空间各向异性的IDW插值算法[J]. 计算机工程与设计,2020,41(4):983−987. SUN Mengnan,LIU Shaohua,LIU Jingcheng. IDW interpolation algorithm considering spatial anisotropy[J]. Computer Engineering and Design,2020,41(4):983−987.

[18] 房鹏,陈丽钧. 三维空间属性体克里金插值方法的研究[J]. 电脑知识与技术,2020,16(1):231−232. FANG Peng,CHEN Lijun. Research on Kriging interpolation method of 3D spatial attribute volume[J]. Computer Knowledge and Technology,2020,16(1):231−232.

[19] 冯波,陈明涛,岳冬冬,等. 基于两种插值算法的三维地质建模对比[J]. 吉林大学学报(地球科学版),2019,49(4):1200−1208. FENG Bo,CHEN Mingtao,YUE Dongdong,et al. Comparison of 3D geological modeling based on two different interpolation methods[J]. Journal of Jilin University(Earth Science Edition),2019,49(4):1200−1208.

[20] 田维. 基于距离幂反比法的新疆黄土坡铜锌矿品位估算应用研究[J]. 中国矿山工程,2018,47(5):14−18. TIAN Wei. Application study of ore grade estimation based on distance power inverse ratio method in Xinjiang Huangtupo copper and zinc mine[J]. China Mine Engineering,2018,47(5):14−18.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.