Coal Geology & Exploration
Abstract
CO2-enriched coalbed methane(CBM) carries important geological information on CBM genesis and accumulation, and is closely related to the exploration and evaluation of CBM resources. On the basis of the systematic summary of the current research progress of CBM genesis, the current research status of the genetic mechanism of CO2-enriched CBM reservoirs was scientifically analyzed by dissecting the special geological examples of CO2-enriched CBM reservoirs in the southern Junggar Basin, and the problems in the research process of CBM genesis were comprehensively pointed out. The study shows that the generation of CBM has multiple sources and multiple stages, and different genesis of CBM significantly varies in geochemical characteristics. As there are limitations in the current CBM genesis identification charts and standards, it is necessary to establish a multi-factor comprehensive identification system of CBM genesis, and along with the regional geological conditions and parent material inheritance differences, the CBM genesis and the associated geological process are comprehensively explained. The gas composition, isotopic composition, and accumulation process of CO2-enriched CBM reservoirs, are closely related to multiple geochemical and biogeochemical effects, including the generation and accumulation of CO2 in the early coalification, the differential dissolution and consumption of CO2 with the participation of groundwater, migration and fractionation, and the later transformation of microorganisms. For the different genesis of CBM reservoirs, the corresponding resource evaluation index system should be established to effectively delineate sweet spots and sweet formations. For CO2-enriched CBM reservoirs, it is necessary to scientifically establish a standard for defining the depth of the aeolian oxidation zone and carry out the effective evaluation of CBM resources.
Funding Information
10.12363/issn.1001-1986.21.12.0849
Keywords
CO2-enriched CBM, CBM genesis, multiple source and stage, isotopic composition, geochemistry
Recommended Citation
TANG Shuling, TANG Dazhen, SUN Bin,
et al.
(2022)
"Research progress of multi-source and multi-stage genesis of CO2-enriched CBM and the enlightenments for its exploration and development,"
Coal Geology & Exploration: Vol. 50:
Iss.
3, Article 7.
Available at:
https://cge.researchcommons.org/journal/vol50/iss3/7
Reference
[1] KOTARBA M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins,Poland[J]. Organic Geochemistry,2001,32(1):163−180.
[2] 陶明信. 煤层气地球化学研究现状与发展趋势[J]. 自然科学进展,2005,15(6):648−652. TAO Mingxin. Research status and development trend of coalbed methane geochemistry[J]. Advances in Natural Science,2005,15(6):648−652.
[3] FLORES R M,RICE C A,STRICKER G D,et al. Methanogenic pathways of coal−bed gas in the Powder River Basin,United States:The geologic factor[J]. International Journal of Coal Geology,2008,76(1):52−75.
[4] 张小军,陶明信,马锦龙,等. 含次生生物成因煤层气的碳同位素组成特征:以淮南煤田为例[J]. 石油实验地质,2009,31(6):622−626. ZHANG Xiaojun,TAO Mingxin,MA Jinlong,et al. Characteristics of carbon isotope composition from secondary biogenic gas in coalbed gases:Taking the Huainan coal field as an example[J]. Petroleum Geology & Experiment,2009,31(6):622−626.
[5] 陶明信,王万春,段毅,等. 煤层气的成因和类型及其资源贡献[M]. 北京:科学出版社,2014.
[6] 李玺,尹淮新. 对乌鲁木齐七道湾背斜煤层气中二氧化碳含量较高问题的解决思路[J]. 中国西部科技,2009,8(7):37−38. LI Xi,YIN Huaixin. The solutions for the high carbon dioxide level in the Anticline coal–bed methane[J]. Science and Technology of West China,2009,8(7):37−38.
[7] 汤达祯,杨曙光,唐淑玲,等. 准噶尔盆地煤层气勘探开发与地质研究进展[J]. 煤炭学报,2021,46(8):2412−2425. TANG Dazhen,YANG Shuguang,TANG Shuling,et al. Advance on exploration−development and geological research of coalbed methane in the Junggar Basin[J]. Journal of China Coal Society,2021,46(8):2412−2425.
[8] PASHIN J C,MCINTYRE–REDDEN M R,MANN S D,et al. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin[J]. International Journal of Coal Geology,2014,126:92−105.
[9] LAW B E,RICE D D. Hydrocarbons from coal[M]. Canada:AAPG Special Publication,1993.
[10] 徐永昌. 天然气成因理论及应用[M]. 北京:科学出版社,1994.
[11] 戴金星,石昕,卫延召. 无机成因油气论和无机成因的气田(藏)概略[J]. 石油学报,2001,22(6):5−10. DAI Jinxing,SHI Xin,WEI Yanzhao. Summary of the abiogenic origin theory and the abiogenic gas pools(fields)[J]. Acta Petrolei Sinica,2001,22(6):5−10.
[12] SCOTT A R,KAISER W R,AYERS W B. Thermogenic and secondary biogenic gases,San Juan Basin,Colorado and New Mexico−Implications for coalbed gas producibility[J]. AAPG Bulletin,1994,78(8):1186−1209.
[13] RICE D D. Composition and origins of coalbed gas[J]. Hydrocarbons from Coal:AAPG Studies in Geology,1993,38(1):159−184.
[14] 汤达祯. 煤变质演化与煤成气生成条件[M]. 北京:地质出版社,1998.
[15] 李站伟,汤达祯,唐淑玲,等. 准噶尔盆地南缘富CO2低阶煤层气藏的形成机理研究[J]. 煤炭科学技术,2021,49(3):175−180. LI Zhanwei,TANG Dazhen,TANG Shuling,et al. Study on formation mechanism of CO2–enriched CBM reservoirs in low–rank coal seams from southern Junggar Basin[J]. Coal Science and Technology,2021,49(3):175−180.
[16] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1):291−314.
[17] MILKOV A V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs[J]. Organic Geochemistry,2011,42(2):184−207.
[18] 苏现波,徐影,吴昱,等. 盐度、pH对低煤阶煤层生物甲烷生成的影响[J]. 煤炭学报,2011,36(8):1302−1306. SU Xianbo,XU Ying,WU Yu,et al. Effect of salinity and pH on biogenic methane production of low−rank coal[J]. Journal of China Coal Society,2011,36(8):1302−1306.
[19] 王爱宽. 褐煤本源菌生气特征及其作用机理[J]. 煤炭学报,2010,35(11):1945−1946. WANG Aikuan. Generation and mechanism of gas from brown coal under action of parent bacterium[J]. Journal of China Coal Society,2010,35(11):1945−1946.
[20] GLASBY G P. Abiogenic origin of hydrocarbons:An historical overview[J]. Resource Geology,2006,56(1):83−96.
[21] LOLLAR B S,LACRAMPE−COULOUME G,VOGLESONGER K,et al. Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian shield sites:A model for abiogenic polymerization of hydrocarbons[J]. Geochimica et Cosmochimica Acta,2008,72(19):4778−4795.
[22] TAO Mingxin,SHI Baoguang,LI Jinying,et al. Secondary biological coalbed gas in the Xinji area,Anhui Province,China:Evidence from the geochemical features and secondary changes[J]. International Journal of Coal Geology,2007,71(2/3):358−370.
[23] 于大河. 营城煤田岩石与二氧化碳突出预测与防治研究[J]. 煤炭技术,2009,28(9):120−121. YU Dahe. Research on forecast and prevention of rock and carbon dioxide outburst in Yingcheng coal field[J]. Coal Technology,2009,28(9):120−121.
[24] 李伟. 海石湾井田CO2成藏演化机制及防治技术研究[J]. 煤炭学报,2012,37(1):177−178. LI Wei. Mechanism of CO2 pools formation and CO2 control technology of Haishiwan coalfield[J]. Journal of China Coal Society,2012,37(1):177−178.
[25] 秦勇. 中国煤层气成藏作用研究进展与述评[J]. 高校地质学报,2012,18(3):405−418. QIN Yong. Advances and reviews on coalbed methane reservoir formation in China[J]. Geological Journal of China Universities,2012,18(3):405−418.
[26] 琚宜文,李清光,颜志丰,等. 煤层气成因类型及其地球化学研究进展[J]. 煤炭学报,2014,39(5):806−815. JU Yiwen,LI Qingguang,YAN Zhifeng,et al. Origin types of CBM and their geochemical research progress[J]. Journal of China Coal Society,2014,39(5):806−815.
[27] CLAYTON J L. Geochemistry of coalbed gas:A review[J]. International Journal of Coal Geology,1998,35(1):159−173.
[28] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81.
[29] KVENVOLDEN K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry,1995,23(11/12):997−1008.
[30] SONG Yan,LIU Shaobo,ZHANG Qun,et al. Coalbed methane genesis,occurrence and accumulation in China[J]. Petroleum Science,2012,9(3):269−280.
[31] WHITICAR M J,FABER E,SCHOELL M. Biogenic methane formation in marine and freshwater environments:CO2 reduction vs. acetate fermentation−isotope evidence[J]. Geochimica et Cosmochimica Acta,1986,50(5):693−709.
[32] MILKOV A V,ETIOPE G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples[J]. Organic Geochemistry,2018,125:109−120.
[33] 程有义. 含油气盆地二氧化碳成因研究[J]. 地球科学进展,2000,15(6):684−687. CHENG Youyi. Origins of carbon dioxide in petroliferous basins[J]. Advance in Earth Sciences,2000,15(6):684−687.
[34] 刘宝明,何家雄,夏斌,等. 国内外CO2研究现状及发展趋势[J]. 天然气地球科学,2004,15(4):412−417. LIU Baoming,HE Jiaxiong,XIA Bin,et al. Recent studying situation and progress tendency of carbon dioxide[J]. Natural Gas Geoscience,2004,15(4):412−417.
[35] 朱岳年. 二氧化碳地质研究的意义及全球高含二氧化碳天然气的分布特点[J]. 地球科学进展,1997,12(1):26−31. ZHU Yuenian. Significance of studying CO2 geology and the global distributive features of high CO2–bearing gas[J]. Advance in Earth Sciences,1997,12(1):26−31.
[36] GLEASON J D,KYSER T K. Stable isotope compositions of gases and vegetation near naturally burning coal[J]. Nature,1984,307(5948):254−257.
[37] 戴金星,宋岩,戴春森,等. 中国东部无机成因气及其气藏形成条件[M]. 北京:科学出版社,1995.
[38] 戴金星. 各类天然气的成因鉴别[J]. 中国海上油气,1992,6(1):11−19. DAI Jinxing. Identification of various genetic natural gases[J]. China Offshore Oil and Gas,1992,6(1):11−19.
[39] 王晓波,李志生,李剑,等. 稀有气体全组分含量及同位素分析技术[J]. 石油学报,2013,34(增刊1):70−77. WANG Xiaobo,LI Zhisheng,LI Jian,et al. Techniques for total composition and isotope analyses of noble gases[J]. Acta Petrolei Sinica,2013,34(Sup.1):70−77.
[40] 李剑,李志生,王晓波,等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发,2017,44(4):503−512. LI Jian,LI Zhisheng,WANG Xiaobo,et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development,2017,44(4):503−512.
[41] ARAVENA R,HARRISON S M,BARKER J F,et al. Origin of methane in the Elk Valley coalfield,southeastern British Columbia,Canada[J]. Chemical Geology,2003,195(1/2/3/4):219−227.
[42] 秦胜飞,唐修义,宋岩,等. 煤层甲烷碳同位素分布特征及分馏机理[J]. 中国科学. D辑:地球科学,2006,36(12):1092−1097. QIN Shengfei,TANG Xiuyi,SONG Yan,et al. Carbon isotope distribution characteristics and fractionation mechanism of coal bed methane[J]. Scientia Sinica(Terrae),2006,36(12):1092−1097.
[43] 孟召平,张纪星,刘贺,等. 煤层甲烷碳同位素与含气性关系[J]. 煤炭学报,2014,39(8):1683−1690. MENG Zhaoping,ZHANG Jixing,LIU He,et al. Relationship between the methane carbon isotope and gas–bearing properties of coal reservoir[J]. Journal of China Coal Society,2014,39(8):1683−1690.
[44] 秦勇,唐修义,叶建平,等. 中国煤层甲烷稳定碳同位素分布与成因探讨[J]. 中国矿业大学学报,2000,29(2):113−119. QIN Yong,TANG Xiuyi,YE Jianping,et al. Characteristics and origins of stable carbon isotope in coalbed methane of China[J]. Journal of China University of Mining & Technology,2000,29(2):113−119.
[45] 戚厚发,陈文正. 煤成气甲烷碳同位素特征[J]. 天然气工业,1984,4(2):20−24. QI Houfa,CHEN Wenzheng. Carbon isotope characteristics of methane from the coal−formed gas[J]. Natural Gas Industry,1984,4(2):20−24.
[46] FU Haijiao,TANG Dazhen,PAN Zhejun,et al. A study of hydrogeology and its effect on coalbed methane enrichment in the southern Junggar Basin,China[J]. AAPG Bulletin,2018,103(1):189−213.
[47] 李跃国,姚程鹏,杨曙光,等. 准南米泉地区煤层气成因及其富集成藏机理研究[J]. 煤炭科学技术,2021,49(4):220−226. LI Yueguo,YAO Chengpeng,YANG Shuguang,et al. Study on origin and accumulation mechanism of coalbed methane in Miquan area of southern margin of Junggar Basin[J]. Coal Science and Technology,2021,49(4):220−226.
[48] 陈振宏,孟召平,曾良君. 准噶尔东南缘中低煤阶煤层气富集规律及成藏模式[J]. 煤炭学报,2017,42(12):3203−3211. CHEN Zhenhong,MENG Zhaoping,ZENG Liangjun. Formation mechanism and enrichment patterns of middle−low rank coalbed methane in southern Junggar Basin,China[J]. Journal of China Coal Society,2017,42(12):3203−3211.
[49] 孙粉锦,田文广,陈振宏,等. 中国低煤阶煤层气多元成藏特征及勘探方向[J]. 天然气工业,2018,38(6):10−18. SUN Fenjin,TIAN Wenguang,CHEN Zhenhong,et al. Low−rank coalbed methane gas pooling in China:Characteristics and exploration orientation[J]. Natural Gas Industry,2018,38(6):10−18.
[50] 宋岩,柳少波,赵孟军,等. 煤层气藏边界类型、成藏主控因素及富集区预测[J]. 天然气工业,2009,29(10):5−9. SONG Yan,LIU Shaobo,ZHAO Mengjun,et al. Coalbed gas reservoirs:Boundary types,main controlling factors of gas pooling,and forecast of gas–rich areas[J]. Natural Gas Industry,2009,29(10):5−9.
[51] 刘洪林,李景明,李贵中,等. 浅议我国低煤阶地区煤层气的成藏特点:从甲烷风化带的角度[J]. 天然气地球科学,2007,18(1):125−128. LIU Honglin,LI Jingming,LI Guizhong,et al. Discussion on low rank coalbed methane between China and U.S.A. from the methane oxidation zone[J]. Natural Gas Geoscience,2007,18(1):125−128.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons