•  
  •  
 

Coal Geology & Exploration

Authors

XU Fengyin, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;Follow
YAN Xia, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;Follow
LIN Zhenpan, PetroChina Coalbed Methane Company Limited, Beijing 100028, China
LI Shuguang, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;
XIONG Xianyue, PetroChina Coalbed Methane Company Limited, Beijing 100028, China
YAN Detian, College of Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
WANG Hongya, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;
ZHANG Shuangyuan, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;
XU Borui, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;
MA Xinyuan, China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China;
BAI Nan, PetroChina Coalbed Methane Company Limited, Beijing 100028, China
MEI Yonggui, PetroChina Coalbed Methane Company Limited, Beijing 100028, China

Abstract

During the 13th Five Year Plan period, the major problem of the low output of a single well of coalbed methane (CBM) has restricted the efficient development of CBM in China. Through Major National Science and Technology Projects and other technical researches, significant progress has been made in the theoretical understanding and engineering technology of CBM exploration and development. It is manifested in four aspects as follows. Firstly, the exploration concept has changed from looking for rich dessert areas to high-yield dessert areas, and the extensive development deployment has become finer. Secondly, in terms of efficient stimulation technology, with the expansion from two-dimensional seimic to three-dimensional seimic and from vertical wells (cluster wells) to horizontal wells, a new series of fracturing stimulation technologies for coal reservoirs transformation are developed, including indirect fracturing of crushed soft coal, multi-cluster acid fracturing of few sections of horizontal wells applied to calcite filled deep coal seams, and ultra-large-scale limit fracturing of horizontal wells in ultra-low permeability deep coal seams. These technologies have preliminarily solved the problem of economic benefit development of structural coal CBM, broken through the bottleneck of fracturing technology in coal seams with a depth of more than 2 000 m, and promoted the extension of CBM development from medium-shallow layers to deep layers. Thirdly, in terms of drainage and production technology, key technologies such as quantitative drainage and production multi-objective optimization design, CBM well rodless lifting and negative pressure drainage technology have been developed, promoting the transformation of CBM drainage and production control from qualitative to semi-quantitative and quantitative, solving the drainage and production problems of integrated cluster well groups and downward inclined horizontal wells, and effectively improving the production of single wells and the recovery rate of CBM. At last, in terms of stable production and stimulation technology, the innovative technologies are proposed, including stress release gas production of large-diameter horizontal wells and controllable temperature nitrogen injection displacement and stimulation of CBM, which provides technical reserves for the secondary development of CBM. In view of the stage characteristics of China’s CBM industry in the “climbing period” and “strategic opportunity period”, and the goal of the “carbon peak and neutrality”, based on the technical problems that need to be solved, this paper puts forward the “two-step” development strategy of China’s CBM industry. (1) By 2025, breakthroughs will be made in theory and technology, reaching the national target of 10 billion cubic meters per year in the 14th Five Year Plan, and strengthening confidence in industrial development. (2) By 2030, applicable technologies for different geological conditions in China will be formed, reaching the target of annual output of 30 billion cubic meters, and becoming an important part of natural gas production. The corresponding countermeasures are as follows. From the perspective of technology and management, according to the five elements of resources, technology, talents, policy and investment, and in line with the principle of “technological breakthrough as the core, five in one and collaborative innovation”, supporting safeguard measures are studied, formulated and implemented. Moreover, from the two aspects of efficient development and increasing the output of single well, theoretical research and technical research directions in nine aspects related to the future development of CBM industry are put forward, so as to achieve the goal of realizing the high-quality development of national CBM industry.

Funding Information

10.12363/issn.1001-1986.21.12.0736

Keywords

coalbed methane, exploration, efficient stimulation, drainage and production, technical progress, development direction

Reference

[1] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18. XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.

[2] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215. XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.

[3] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267. LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.

[4] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60.

[5] 张遂安,袁玉,孟凡圆. 我国煤层气开发技术进展[J]. 煤炭科学技术,2016,44(5):1−5. ZHANG Sui’an,YUAN Yu,MENG Fanyuan. Progress on coalbed methane development technology in China[J]. Coal Science and Technology,2016,44(5):1−5.

[6] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6. QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.

[7] 秦勇. 中国煤层气产业化面临的形势与挑战(Ⅲ):走向与前瞻性探索[J]. 天然气工业,2006,26(3):1−5. QIN Yong. Situation and challenges for coal−bed methane industrialization in China(Ⅲ):Trend and pioneer research[J]. Natural Gas Industry,2006,26(3):1−5.

[8] 秦勇. 中国煤层气产业化面临的形势与挑战(Ⅱ):关键科学技术问题[J]. 天然气工业,2006,26(2):6−10. QIN Yong. Situation and Challenges for Coalbed Methane Industrialization in China (Ⅱ):Key scientific and technological problems[J]. Natural Gas Industry,2006,26(2):6−10.

[9] 秦勇,朱旺喜. 中国煤层气产业发展所面临的若干科学问题[J]. 中国科学基金,2006(3):148−152. QIN Yong,ZHU Wangxi. Several scientific problems faced in developing China’s coalbed methane industry[J]. Bulletin of National Natural Science Foundation of China,2006(3):148−152.

[10] 温声明,周科,鹿倩. 中国煤层气发展战略探讨:以中石油煤层气有限责任公司为例[J]. 天然气工业,2019,39(5):129−136. WEN Shengming,ZHOU Ke,LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co., Ltd.[J]. Natural Gas Industry,2019,39(5):129−136.

[11] 叶建平,陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术,2016,44(1):24−28. YE Jianping,LU Xiaoxia. Development status and technical progress of China coalbed methane industry[J]. Coal Science and Technology,2016,44(1):24−28.

[12] 赵贤正,朱庆忠,孙粉锦,等. 沁水盆地高阶煤层气勘探开发实践与思考[J]. 煤炭学报,2015,40(9):2131−2136. ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al. Practice and thought of coalbed methane exploration and development in Qinshui Basin[J]. Journal of China Coal Society,2015,40(9):2131−2136.

[13] 姜波,李明,屈争辉,等. 构造煤研究现状及展望[J]. 地球科学进展,2016,31(4):335−346. JIANG Bo,LI Ming,QU Zhenghui,et al. Current research status and prospect of tectonically deformed coal[J]. Advances in Earth Science,2016,31(4):335−346.

[14] 邵先杰,朱明,武宁,等. 煤层气聚集理论研究进展综述[J]. 科学技术与工程,2017,17(26):156−164. SHAO Xianjie,ZHU Ming,WU Ning,et al. Research progress and review on coal−bed methane accumulation theory[J]. Science Technology and Engineering,2017,17(26):156−164.

[15] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375−380. YAN Xia,WEN Shengming,NIE Zhihong,et al. Re–recognition of geological factors affecting coalbed methane development effect[J]. Fault−Block Oil and Gas Field,2020,27(3):375−380.

[16] 李勇,汤达祯,孟尚志,等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报,2017,2(5):416−424. LI Yong,TANG Dazhen,MENG Shangzhi,et al. The in−situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology,2017,2(5):416−424.

[17] 闫霞,李小军,赵辉,等. 煤层气井井间干扰研究及应用[J]. 岩性油气藏,2015,27(2):126−132. YAN Xia,LI Xiaojun,ZHAO Hui,et al. Research on well interference of coalbed methane wells and its application[J]. Lithologic Reservoirs,2015,27(2):126−132.

[18] 许浩,汤达祯. 基于煤层气产出的煤岩学控制机理研究进展[J]. 煤炭科学技术,2016,44(6):140−145. XU Hao,TANG Dazhen. Research progress of control mechanism of coal petrology on CBM production[J]. Coal Science and Technology,2016,44(6):140−145.

[19] 闫霞,聂志宏,孙贺,等.煤层气田老井递减主控因素分析及应对措施:以鄂尔多斯盆地保德区块为例[C]//中国石油学会天然气专业委员会.第32届全国天然气学术年会(2020)论文集.中国石油学会天然气专业委员会:中国石油学会天然气专业委员会,2020.

[20] 秦勇,吴建光,张争光,等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报,2020,45(1):241−257. QIN Yong,WU Jianguang,ZHANG Zhengguang,et al. Analysis of geological conditions for coalbed methane co−production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society,2020,45(1):241−257.

[21] 康永尚,邓泽,皇甫玉慧,等. 中煤阶煤层气高饱和—超饱和带的成藏模式和勘探方向[J]. 石油学报,2020,41(12):1555−1566. KANG Yongshang,DENG Ze,HUANGFU Yuhui,et al. Accumulation model and exploration direction of high−to over−saturation zone of the midium−rank coalbed methane[J]. Acta Petrolei Sinica,2020,41(12):1555−1566.

[22] 秦勇,汤达祯,刘大锰,等. 煤储层开发动态地质评价理论与技术进展[J]. 煤炭科学技术,2014,42(1):80–88.

QIN Yong,TANG Dazhen,LIU Dameng,et al. Coal Science and Technology,2014,42(1):80–88.

[23] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54. QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54.

[24] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136. QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.

[25] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

[26] 王辰龙,韩金良,刘奕杉,等. 煤层气开发工程关键技术研究现状及发展趋势分析[J]. 工程技术研究,2021,6(3):247−248. WANG Chenlong,HAN Jinliang,LIU Yitong,et al. Research status and development trend of key technologies in coalbed methane development engineering[J]. Metallurgical Collections,2021,6(3):247−248.

[27] 刘波,刘娇. 煤层气开采技术应用现状及其改进[J]. 石化技术,2020,27(12):233−234. LIU Bo,LIU Jiao. Application status and improvement of coalbed methane development technology[J]. Petrochemical Industry Technology,2020,27(12):233−234.

[28] 赵凌云,易同生. 煤层气水平井井型结构分析及钻完井技术优化[J]. 煤炭科学技术,2020,48(3):221−226. ZHAO Lingyun,YI Tongsheng. Analysis on well type structure and optimization of associated drilling technology of CBM horizontal wells[J]. Coal Science and Technology,2020,48(3):221−226.

[29] 郝世俊,张晶. 我国煤层气钻井技术及装备现状与展望[J]. 煤炭科学技术,2018,46(4):16−21. HAO Shijun,ZHANG Jing. Status and prospect of coalbed methane drilling technique and equipment in China[J]. Coal Science and Technology,2018,46(4):16−21.

[30] 吕帅锋,王生维,乌效鸣,等. 沁水盆地煤层气井钻井液技术现状和发展方向[J]. 中国煤层气,2016,13(5):44−47. LYU Shuaifeng,WANG Shengwei,WU Xiaoming,et al. Current situation and development direction of drilling fluid technology for CBM wells in Qinshui Basin[J]. China Coalbed Methane,2016,13(5):44−47.

[31] 张波,倪元勇,盛晨,等. 煤层气仿树形水平井钻井关键技术研究[J]. 煤炭工程,2019,51(1):47−50. ZHANG Bo,NI Yuanyong,SHENG Chen,et al. Research on key drilling technology of CBM tree−like horizontal well[J]. Coal Engineering,2019,51(1):47−50.

[32] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.

[33] 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气,2021,33(4):120−128. SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas,2021,33(4):120−128.

[34] 王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17−21. WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17−21.

[35] 巫修平,张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学,2018,29(2):268−276. WU Xiuping,ZHANG Qun. Research on controlling mechanism of fracture propagation of multi−stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2018,29(2):268−276.

[36] 巫修平. 碎软煤层顶板岩层水平井大尺寸穿层压裂物理模拟试验研究[J]. 煤矿安全,2017,48(11):5−8. WU Xiuping. Study on physical simulation test of cross–strata hydraulic fracturing for big size horizontal well in roof strata of broken soft coal seam[J]. Safety in Coal Mines,2017,48(11):5−8.

[37] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.

[38] 许耀波,朱玉双,张培河. 紧邻碎软煤层的顶板岩层水平井开发煤层气技术[J]. 天然气工业,2018,38(9):70−75. XU Yaobo,ZHU Yushuang,ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken soft coal seams[J]. Natural Gas Industry,2018,38(9):70−75.

[39] 刘斌,杜海为,崔金榜,等. 煤层气井排采控制技术发展现状与展望[J]. 石油钻采工艺,2019,41(4):489−493. LIU Bin,DU Haiwei,CUI Jinbang,et al. Development status and prospect of CBM well production control technologies[J]. Oil Drilling & Production Technology,2019,41(4):489−493.

[40] 刘冰. 煤层气井排采和射流负压作业的排煤粉理论与技术研究[D]. 东营:中国石油大学(华东),2014.

LIU Bing. Theory and technology research on coal particle cleanouts of deliquification process and jet vacuuming in coalbed methane wellbore[D]. Dong Ying:China University of Petroleum(East China),2014.

[41] 周俊杰,杜晓华. 煤层气排采工艺技术研究及主要参数分析[J]. 工程技术研究,2017(6):235−236. ZHOU Junjie,DU Xiaohua. Study on coalbed methane drainage technology and analysis of main parameters[J]. Metallurgical Collections,2017(6):235−236.

[42] 彭川,张遂安,王凤林,等. 煤层气井负压排采技术潜在增产因素分析[J]. 科学技术与工程,2019,19(14):166−171. PENG Chuan,ZHANG Sui’an,WANG Fenglin,et al. Analysis of potential increasing production factors for negative pressure drainage technology in coalbed methane wells[J]. Science Technology and Engineering,2019,19(14):166−171.

[43] 冯堃,孙晓勇. 煤层气井负压排采智能评价系统研制[J]. 中国煤层气,2020,17(4):13−15. FENG Kun,SUN Xiaoyong. Study on intelligent evaluation system for negative pressure drainage of CBM well[J]. China Coalbed Methane,2020,17(4):13−15.

[44] 高宇,纪彦波,董建秋,等. 成庄合作区块负压抽排实施效果分析[J]. 中国煤层气,2021,18(4):11−15. GAO Yu,JI Yanbo,DONG Jianqiu,et al. Analysis of implementation effect of negative pressure drainage in Chengzhuang block[J]. China Coalbed Methane,2021,18(4):11−15.

[45] 温声明,文桂华,李星涛,等. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探,2018,23(2):69−75. WEN Shengming,WEN Guihua,LI Xingtao,et al. Application and effect of geology–engineering integration in the exploration and development of Baode CBM field[J]. China Petroleum Exploration,2018,23(2):69−75.

[46] 付玉通. 延川南深部煤层气地质特征与水平井开发技术地质适配性研究[D]. 徐州:中国矿业大学,2018.

FU Yutong. Study on geological characteristics of the deep CBM and adaptability of horizontal well development techniques with them in the Southern Yanchuan Block[D]. Xu Zhou:China University of Mining & Technology,2018.

[47] 李勇,王延斌,倪小明,等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术,2020,48(2):185−193. LI Yong,WANG Yanbin,NI Xiaoming,et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology,2020,48(2):185−193.

[48] 秦勇,李恒乐,张永民,等. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析[J]. 煤田地质与勘探,2021,49(1):108−118. QIN Yong,LI Hengle,ZHANG Yongmin,et al. Numerical analysis on CSW fracturing behavior of coal seam under constraint of geological and engineering conditions[J]. Coal Geology & Exploration,2021,49(1):108−118.

[49] 秦勇,申建,史锐.中国煤系气大产业建设战略价值与战略选择[J/OL].煤炭学报,2021:1–19 [2021–11–23].https://doi.org/10.13225/j.cnki.jccs.YG21.1616.

QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of CMG industry in China[J/OL]. Journal of China Coal Society,2021:1–19 [2021–11–23].https://doi.org/10.13225/j.cnki.jccs.YG21.1616.

[50] 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报,2021,46(8):2387−2399. QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society,2021,46(8):2387−2399.

[51] 秦勇,吴建光,李国璋,等. 煤系气开采模式探索及先导工程示范[J]. 煤炭学报,2020,45(7):2513−2522. QIN Yong,WU Jianguang,LI Guozhang,et al. Patterns and pilot project demonstration of coal measures gas production[J]. Journal of China Coal Society,2020,45(7):2513−2522.

[52] 王杰. 煤层气采收率的影响因素及提高采收率策略研究[J]. 石化技术,2017,24(12):221. WANG Jie. Study on influencing factors of coalbed methane recovery and EOR strategy[J]. Petrochemical Industry Technology,2017,24(12):221.

[53] 秦勇,吴建光,申建,等. 煤系气合采地质技术前缘性探索[J]. 煤炭学报,2018,43(6):1504−1516. QIN Yong,WU Jianguang,SHEN Jian,et al. Frontier research of geological technology for coal measure gas joint−mining[J]. Journal of China Coal Society,2018,43(6):1504−1516.

[54] 秦勇. 中国煤系气共生成藏作用研究进展[J]. 天然气工业,2018,38(4):26−36. QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry,2018,38(4):26−36.

[55] 陈世达. 黔西多煤层煤层气储渗机制及合层开发技术对策[D]. 北京:中国地质大学(北京),2020.

CHEN Shida. Permeable−storage mechanism and the development technical countermeasures for coalbed methane in multi–seams in western Guizhou[D]. Beijing:China University of Geosciences (Beijing),2020.

[56] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23. QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas−bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.

[57] 秦玉金,苏伟伟,田富超,等. 煤层注水微观效应研究现状及发展方向[J]. 中国矿业大学学报,2020,49(3):428−444. QIN Yujin,SU Weiwei,TIAN Fuchao,et al. Research status and development direction of microcosmic effect under coal seam water injection[J]. Journal of China University of Mining & Technology,2020,49(3):428−444.

[58] 李勇,韩文龙,王延斌,等. 基于煤层气高效开发的煤粉凝聚–沉降机制研究进展[J]. 煤田地质与勘探,2021,49(2):1−12. LI Yong,HAN Wenlong,WANG Yanbin,et al. Progress of coal fines agglomeration and settlement mechanism based on high efficiency coalbed methane drainage[J]. Coal Geology & Exploration,2021,49(2):1−12.

[59] 秦勇,邱爱慈,张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术,2014,42(6):1−7. QIN Yong,QIU Aici,ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology,2014,42(6):1−7.

[60] 刘淑琴,畅志兵,刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报,2021,6(3):261−270. LIU Shuqin,CHANG Zhibing,LIU Jinchang. Key technologies and prospect for in−situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology,2021,6(3):261−270.

[61] 苏发强,于光磊,高喜才,范伟涛,荆士杰,浦海,王伟林. 煤炭地下气化的热环境下煤样内部构造变化及模型试验研究[J]. 煤炭学报,2020,45(12):4191−4200. SU Faqiang,YU Guanglei,GAO Xicai,et al. Study on internal structure change and model test of coal samples in thermal environment based on underground coal gasification[J]. Journal of China Coal Society,2020,45(12):4191−4200.

[62] 刘猛,方惠军,王创业,等. 利用油气开采技术开展深层煤炭气化的可行性研究[C]//西安石油大学,陕西省石油学会. 2019油气田勘探与开发国际会议论文集. 西安石油大学,陕西省石油学会:西安石油大学,2019.

[63] 许加芳. 煤炭地下气化的原理及发展情况[J]. 煤矿现代化,2014(5):120−122. XU Jiafang. Principle and development of underground coal gasification[J]. Coal Mine Modernization,2014(5):120−122.

[64] 曹运兴,石玢,周丹,等. 煤层气低产井高压氮气闷井增产改造技术与应用[J]. 煤炭学报,2019,44(8):2556−2565. CAO Yunxing,SHI Bin,ZHOU Dan,et al. Study and application of stimulation technology for low production CBM well through high pressure N2 injection−soak[J]. Journal of China Coal Society,2019,44(8):2556−2565.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.