Coal Geology & Exploration


The mechanical properties of low carbon high strength steel materials used in drilling equipment can be improved effectively by adjusting tempering temperatures of different heat treatments to obtain different material composition. The heat treatment and tempering temperatures were set at 610℃, 630℃ and 650 ℃ respectively, and the microstructure of this low-carbon high-strength steel was compared and analyzed by metallographic microscope and Scanning Electron Microscope(SEM). After tempering, the microhardness, tensile properties and impact energy of the structure were measured respectively by the microhardness tester, universal material testing machine and impact testing machine. The research results show that the performance of the material after quenching and tempering is improved compared with that of the raw material. When the tempering temperature is 610℃, the microstructure is tempered martensite and tempered sorbite, with the maximum yield strength of 1 020 MPa and the microhardness of 332 HV. It also has good plasticity. As the tempering temperature increases, the microstructure recovers and transforms into tempered sorbite. At this time, the yield strength and tensile strength decrease, and the impact energy increases with the highest at 650°C. With the change of tempering temperature, the impact and tensile fractures show multiple failure modes of ductile fracture, quasi-cleavage fracture and mixed fracture. The tempering process can effectively improve the mechanical properties of the low-carbon high-strength steel, which can have a wide application easily in production.


low-carbon high-strength steel, tempering temperature, structure, mechanical property




[1] 刘卫卫. 煤矿井下定向钻进技术探查断层应用研究[J]. 中国矿业,2021,30(3):198−202. LIU Weiwei. Research on fault detection application of directional drilling technology in coal mine[J]. China Mining Magazine,2021,30(3):198−202.

[2] 李浩. 煤矿老空区定向探查钻孔的施工应用[J]. 能源与环保,2021,43(2):50−54. LI Hao. Construction application of directional exploration boreholes in goaf of coal mine[J]. China Energy and Environmental Protection,2021,43(2):50−54.

[3] 袁子航,叶根飞,赵永哲,等. 定向钻进技术在底板水害超前探查中的应用[J]. 煤炭工程,2021,53(4):45−48. YUAN Zihang,YE Genfei,ZHAO Yongzhe,et al. Application of directional drilling in advance exploration of floor water hazard[J]. Coal Engineering,2021,53(4):45−48.

[4] 常远. 矿用带式输送机传动滚筒结构轻量化设计研究[J]. 机械管理开发,2020,35(8):65−66. CHANG Yuan. Research on lightweight design of driving roller structure of mine belt conveyor[J]. Mechanical Management and Development,2020,35(8):65−66.

[5] 王兴,王清峰,辛德忠. 自动钻机用夹持机构的结构及轻量化设计[J]. 煤矿机械,2021,42(2):116−119. WANG Xing,WANG Qingfeng,XIN Dezhong. Structure and lightweight design of clamping mechanism for automatic drilling rig[J]. Coal Mine Machinery,2021,42(2):116−119.

[6] 李方坡,刘五兵,李旭. 油气钻井装备用低合金高强结构钢国内研制现状与展望[J]. 石油管材与仪器,2020,6(6):1−6. LI Fangpo,LIU Wubing,LI Xu. Research status and propect of low alloy high strength structural steel for oil and gas drilling equipment[J]. Petroleum Tubular Goods & Instruments,2020,6(6):1−6.

[7] 麻衡,徐凯,孙乾. 我国煤机液压支架用高强钢的生产现状与发展趋势[J]. 轧钢,2020,37(6):71−76. MA Heng,XU Kai,SUN Qian. Production status and development trend of high strength steel for coal machine hydraulic support in China[J]. Steel Rolling,2020,37(6):71−76.

[8] 衣海龙,孙明雪,徐洋,等. 轧制工艺对Q690工程机械用钢低温冲击功的影响[J]. 材料热处理学报,2013,34(10):34−37. YI Hailong,SUN Mingxue,XU Yang,et al. Effects of rolling process on low temperature impact energy for a Q690 construction machinery steel[J]. Transactions of Materials and Heat Treatment,2013,34(10):34−37.

[9] XIONG Yang,YU Wei,TANG Di,et al. Effect of direct quenched and tempering temperature on the mechanical properties and microstructure of high strength steel[J]. Materials Research Express,2020,7(12):1−9.

[10] 王海波,王承剑,胡学文,等. 回火温度对1 000 MPa级超高强钢的组织与力学性能的影响[J]. 冶金动力,2020(12):75−78. WANG Haibo,WANG Chengjian,HU Xuewen,et al. Effect of tempering on microstructure and mechanical properties of 1 000 MPa ultra−high strength steel[J]. Metallurgical Power,2020(12):75−78.

[11] 赵洁璠,闵永安,吴晓春,等. 不同热处理工艺对S890高强钢强韧性的影响[J]. 材料热处理学报,2015,36(5):129−134. ZHAO Jiefan,MIN Yongan,WU Xiaochun,et al. Effect of heat treatment on strength and toughness of S890 high strength steel[J]. Transactions of Materials and Heat Treatment,2015,36(5):129−134.

[12] 温长飞,肖爱达,刘旭辉,等. 回火温度对低合金超高强钢Q1300组织与性能的影响[J]. 金属热处理,2019,44(2):172−177. WEN Changfei,XIAO Aida,LIU Xuhui,et al. Effect of tempering temperature on microstructure and mechanical properities of low alloy ultra–high strength steel Q1300[J]. Heat Treatment of Metals,2019,44(2):172−177.

[13] 郑东升,刘丹,罗登,等. 回火温度对超高强钢微观组织及力学性能的影响[J]. 材料热处理学报,2020,41(12):90−96. ZHENG Dongsheng,LIU Dan,LUO Deng,et al. Effect of tempering temperature on microstructure and mechanical properties of ultra−high strength steel[J]. Transactions of Materials and Heat Treatment,2020,41(12):90−96.

[14] 张海峰,张恒华,吴晓春,等. 热处理工艺对S890高强度无缝钢管组织与性能的影响[J]. 上海金属,2014,36(4):30−33. ZHANG Haifeng,ZHANG Henghua,WU Xiaochun,et al. Effect of heat treatment on the microstructure and mechanical properties of S890 high strength seamless steel tube[J]. Shanghai Metals,2014,36(4):30−33.

[15] 李德刚,杨维宇,白雅琼,等. 回火温度对Q690D级高强结构钢组织和性能的影响[J]. 热加工工艺,2014,43(8):220−222. LI Degang,YANG Weiyu,BAI Yaqiong,et al. Effect of tempering temperature on microstructure and properties of Q690D high−strength structural steel[J]. Hot Working Technology,2014,43(8):220−222.

[16] 蓝秀琼,陈建华. 回火温度对PRO500超高强钢的组织与冲击断裂行为的影响[J]. 材料热处理学报,2020,41(8):80−86. LAN Xiuqiong,CHEN Jianhua. Effect of tempering tempetature on microstructure and impact fracture behavior of PRO500 ultra–high strength steel[J]. Transactions of Materials and Heat Treatment,2020,41(8):80−86.

[17] 张青学,刘丹,罗登,等. 高强韧结构钢Q890E热处理工艺研究[J]. 金属材料与冶金工程,2018,46(4):49−54. ZHANG Qingxue,LIU Dan,LUO Deng,et al. Study on quenching and tempering process of 890 MPa steel plates with high strength and toughness[J]. Metal Materials and Metallurgy Engineering,2018,46(4):49−54.

[18] 刘成,龚小寒,鄢梦琪. 回火温度对工程机械用1 000 MPa级高强钢组织与性能的影响[J]. 热加工工艺,2016,45(14):233−235. LIU Cheng,GONG Xiaohan,YAN Mengqi. Effects of tempering temperature on microstructure and properties of engineering mechanical 1 000 MPa high−strength steel[J]. Hot Working Technology,2016,45(14):233−235.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.