Coal Geology & Exploration


Soil layer reconstruction of open-pit coal mine dump is of great significance for ecological reconstruction. In order to study the effect of inoculation of dark septate endophytes (DSE) on water utilization of corn root system under different reconstructed soil layer models, soil column simulating and culturing test was adopted, with DSE inoculation and control treatment set up under each of the four soil layer types, in a total of 8 groups. The results show that the roots of corn are the longest with the maximum density under the treatment with 20% loess, which are 3.2, 2.4 and 2.8 times that of 0%, 10% and 40% loess respectively. After water stress, the root system has the capability to grow downward and absorb deep water. According to the water source analysis of MixSIAR model based on δ18O value, the water at the depth of 0-25 cm is mainly used by corn at the water utilization ratio of 80% under the treatment with 0% loess, and the water at the depth of 15-35 cm is mainly used by corn at the water utilization ratio of 64% under the treatment with 10% loess. However, the water utilization ratio of corn is 36% at the depth of 0-25 cm only and 64% at the depth of 25-45 cm under the treatment with 20% loess, indicating that the water in deep soil is mainly used by corn under the treatment with 20% loess. The DSE inoculation improves the capability of plants to absorb deeper water. Specifically, the depth of water used increases by 5 cm under the treatment with 20% loess. The hydraulic lift of plant roots is maximized under drought stress through inoculation treatment in the matrix containing 20% loess, with the total hydraulic lift during the growth period increased by 45% compared with that treatment without DSE inoculation. The hydraulic lift of plant roots mixed with 20% loess is 1.45 times that of 0% loess under the condition without DSE inoculation, while the hydraulic lift of plant roots mixed with 20% loess can reach 1.72 times that of 0% loess under the condition with DSE inoculation. In conclusion, DSE inoculation and soil layer reconstruction have significant effects on improving the hydraulic lift of plants. In addition, the results of this study could provide experimental reference basis for the improvement of soil and water utilization efficiency of plants in the process of soil layer reconstruction of open-pit mine dump.


open-pit coal mine, root hydraulic lift, DSE, soil layer reconstruction, water utilization ratio, soil column test




[1] 申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117

SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117

[2] 毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355−1364

BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi−arid areas of western China[J]. Journal of China Coal Society,2021,46(5):1355−1364

[3] ZHANG Haitao,XU Guangquan,CHEN Xiaoqing,et al. Hydrogeochemical characteristics and groundwater inrush source identification for a multi–aquifer system in a coal mine[J]. Acta Geologica Sinica (English Edition),2019,93(6):1922−1932.

[4] 李莉,李海霞,马兰. 宁东煤田矿井水资源及其利用现状分析[J]. 干旱区资源与环境,2021,35(8):108−113

LI Li,LI Haixia,MA Lan. The mine water resources and its utilization status in Ningdong coalfield[J]. Journal of Arid Land Resources and Environment,2021,35(8):108−113

[5] 何兴东,高玉葆. 干旱区水力提升的生态作用[J]. 生态学报,2003,23(5):996−1002

HE Xingdong,GAO Yubao. Discussion on ecological role of hydraulic lift in arid region[J]. Acta Ecologica Sinica,2003,23(5):996−1002

[6] MULER A L,VAN ETTEN E J B,STOCK W D,et al. Can hydraulically redistributed water assist surrounding seedlings during summer drought?[J]. Oecologia,2018,187(3):625−641.

[7] 毕银丽,郭晨,王坤. 煤矿区复垦土壤的生物改良研究进展[J]. 煤炭科学技术,2020,48(4):52−59

BI Yinli,GUO Chen,WANG Kun. Research progress of biological improvement of reclaimed soil in coal mining area[J]. Coal Science and Technology,2020,48(4):52−59

[8] YODER C K,NOWAK R S. Hydraulic lift among native plant species in the Mojave Desert[J]. Plant and Soil,1999,215:93−102.

[9] 毕银丽,解琳琳. 丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用[J]. 微生物学报,2021,61(1):58−67

BI Yinli,XIE Linlin. Functions of arbuscular mycorrhizal fungi and dark septate endophytes in ecological restoration[J]. Acta Microbiologica Sinica,2021,61(1):58−67

[10] JUMPPONEN A,TRAPPE J M. Dark septate endophytes:A review of facultative biotrophic root−colonizing fungi[J]. New Phytologist,1998,140(2):295−310.

[11] LIU Yan,WEI Xiaoli. Dark septate endophyte improves drought tolerance of Ormosia hosiei Hemsley & E. H. Wilson by modulating root morphology,ultrastructure,and the ratio of root hormones[J]. Forests,2019,10(10):830.

[12] THOMAS A,YADAV B K,SIMUNEK J. Root water uptake under heterogeneous soil moisture conditions:An experimental study for unraveling compensatory root water uptake and hydraulic redistribution[J]. Plant and Soil,2020,457:421−435.

[13] 于小娟,胡玉金,刘润进. 真菌与植物共生机制研究进展[J]. 微生物学杂志,2017,37(1):98−104

YU Xiaojuan,HU Yujin,LIU Runjin. Advances in mechanism study of symbiosis between fungi and plants[J]. Journal of Microbiology,2017,37(1):98−104

[14] SHENG Min,LALANDE R,HAMEL C,et al. Growth of corn roots and associated arbuscular mycorrhizae are affected by long−term tillage and phosphorus fertilization[J]. Agronomy Journal,2012,104(6):1672−1678.

[15] 毕银丽,邹慧,彭超,等. 采煤沉陷对沙地土壤水分运移的影响[J]. 煤炭学报,2014,39(增刊2):490−496

BI Yinli,ZOU Hui,PENG Chao,et al. Effects of mining subsidence on soil water movement in sandy area[J]. Journal of China Coal Society,2014,39(Sup.2):490−496

[16] 殷齐琪,毕银丽,马少鹏,等. 接种AM真菌对模拟矿区排土场压实土壤柠条根系发育与养分吸收的影响[J]. 煤炭学报,2019,34(3):638−647

YIN Qiqi,BI Yinli,MA Shaopeng,et al. Effects of AMF on the root development and nutrient absorption of Caragana in simulated compacted soil in mining area[J]. Journal of China Coal Society,2019,34(3):638−647

[17] GAO Jia,SHI Jianguo,DONG Suotao,et al. Grain yield and root characteristics of summer maize (Zea mays L. ) under shade stress conditions[J]. Journal of Agronomy and Crop Science,2017,203(6):562−573.

[18] SURONO,NARISAWA K. The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth[J]. Fungal Ecology,2017,28:1−10.

[19] JUMPPONEN A,MATTSON K G,TRAPPE J M. Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil:Interactions with soil nitrogen and organic matter[J]. Mycorrhiza,1998,7(5):261−265.

[20] LI Xia,HE Chao,HE Xueli,et al. Dark septate endophytes improve the growth of host and non−host plants under drought stress through altered root development[J]. Plant and Soil,2019,439(1/2):259–272.

[21] DELLA MONICA I F,SAPARRAT M C N,GODEAS A M,et al. The co−existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes[J]. Fungal Ecology,2015,17:10−17.

[22] LIU Yan,WEI Xiaoli. Dark septate endophyte improves the drought–stress resistance of Ormosia hosiei seedlings by altering leaf morphology and photosynthetic characteristics[J]. Plant Ecology,2021,222(7):761−771.

[23] 胡田田,牛晓丽,漆栋良,等. 玉米初生根向水性诱导优化试验研究[J]. 生态学报,2015,35(6):1829−1836

HU Tiantian,NIU Xiaoli,QI Dongliang,et al. Optimizing hydrotropic response in the maize primary roots[J]. Acta Ecologica Sinica,2015,35(6):1829−1836

[24] BARRON–GAFFORD G A,SANCHEZ–CANETE E P,MINOR R L,et al. Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semi–arid savanna[J]. New Phytologist,2017,215(4):1451−1461.

[25] 张扬,沈玉芳,李世清. 施肥对干旱胁迫下夏玉米根系提水的调节作用研究[J]. 西北植物学报,2009,29(3):535−541

ZHANG Yang,SHEN Yufang,LI Shiqing. Regulation of different fertilizer treatments on hydraulic lift of summer maize under drought stress[J]. Acta Botanica Boreali−Occidentalia Sinica,2009,29(3):535−541

[26] SANTOS S G D,SILVA P R A D,GARCIA A C,et al. Dark septate endophyte decreases stress on rice plants[J]. Brazilian Journal of Microbiology,2017,48(2):333−341.

[27] 王甜甜,田育红,吴秀臣,等. 菌根与植被生长:多变环境下的相互作用[J]. 生态学杂志,2021,40(12):4061−4068

WANG Tiantian,TIAN Yuhong,WU Xiuchen,et al. Mycorrhiza and vegetation growth:Interactions in a changing environment[J]. Chinese Journal of Ecology,2021,40(12):4061−4068

[28] 卢佳,邵光成,章坤,等. 水盐胁迫下根系提水作用对土壤盐分与番茄产量的影响[J]. 农业机械学报,2020,51(9):249−257

LU Jia,SHAO Guangcheng,ZHANG Kun,et al. Effects of root hydraulic lift on soil salt and tomato yield under water and salt stress[J]. Transactions of the Chinese Society of Agricultural Machinery,2020,51(9):249−257



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.