Coal Geology & Exploration
Abstract
The change of geological conditions of coal seam roof overburden and the development of mining fissures caused by coal mining activities are the direct causes of damage to the key underground aquifers, and also the root causes of ecological environment degradation in the mining area. As a typical geological condition, the thick sandstone developed in the overburden structure of the coal seam roof has an important impact on the development law of mining fissures in the overburden. Therefore, the influence of the thickness and location of different thick sandstones on the development morphology and height of overburden mining fractures was simulated and analyzed with the FLAC3D numerical simulation platform based on the analysis of the geological conditions and distribution rules of the main mining coal seams in the study area, taking the roof overburden of main mining coal seam 2−2 in Caojiatan Coal Mine of northern Shaanxi coal mining area as the geological prototype. Hence, suggestions were proposed for “water-preserved coal mining”. The results show that the thick sandstone in the roof overburden of coal seam 2−2 in the study area is 25 m thick on average, with an average spacing of 76 m from coal seam 2−2. Besides, the overburden mining fissures show the dynamic change in “Rectangle—L-shaped—Saddleback” characteristics for the thick sandstone 30 m away from the coal seam, “L-shaped—Inverted trapezoid—Saddleback” characteristics for the thick sandstone 70 m away from the coal seam, and “Saddleback” characteristics in the whole process for the thick sandstone 95 m away from the coal seam. The maximum development height of mining fissures in overburden decreases first and then increases with the increasing of thick sandstone horizon. The thickness of thick sandstone H≥30 m and the distance from the coal seam L>95 m, or H≥60 m and L>60 m could effectively prevent the upward development of mining fissures through the thick sandstone. In full consideration to the influence of thick sandstone on the development law of overburden mining fissures, reasonable measures were taken at appropriate spatial location and mining stage for overburden loss reduction and water conservation to realize the green mining mode of “mining while controlling, mining while protecting”. Generally, the research results could provide theoretical guidance for the coordinated development of coal mining and ecological environment protection in northern Shaanxi coal mining area of Yellow River Basin.
Keywords
Yellow River Basin, overburden mining fissure, thick sandstone, numerical simulation, green mining
DOI
10.12363/issn.1001-1986.22.08.0601
Recommended Citation
WANG Shuangming, WEI Jiangbo, SONG Shijie,
et al.
(2022)
"Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining,"
Coal Geology & Exploration: Vol. 50:
Iss.
12, Article 2.
DOI: 10.12363/issn.1001-1986.22.08.0601
Available at:
https://cge.researchcommons.org/journal/vol50/iss12/2
Reference
[1] 王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15
WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15
[2] 张会军. 黄河流域煤炭富集区生态开采模式初探[J]. 煤炭科学技术,2021,49(12):233−242
ZHANG Huijun. Preliminary study on ecological mining mode in coal–rich area of the Yellow River Basin[J]. Coal Science and Technology,2021,49(12):233−242
[3] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221
PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221
[4] 王双明,杜麟,宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报,2021,46(9):3027−3038
WANG Shuangming,DU Lin,SONG Shijie. Influence of mining ground fissures on soil erodibility in northern Shaanxi coal mining area of Yellow River Basin[J]. Journal of China Coal Society,2021,46(9):3027−3038
[5] 申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117
SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117
[6] 卞正富,于昊辰,雷少刚,等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报,2021,46(5):1378−1391
BIAN Zhengfu,YU Haochen,LEI Shaogang,et al. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River Basin,China[J]. Journal of China Coal Society,2021,46(5):1378−1391
[7] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47
LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology,2022,50(1):28−47
[8] 赵高博,郭文兵,娄高中,等. 基于覆岩破坏传递的导水裂缝带发育高度研究[J]. 煤田地质与勘探,2019,47(2):144−150
ZHAO Gaobo,GUO Wenbing,LOU Gaozhong,et al. Study on development height of permeable fractured zone based on overburden failure transfer[J]. Coal Geology & Exploration,2019,47(2):144−150
[9] WANG Gang,WU Mengmeng,WANG Rui,et al. Height of the mining−induced fractured zone above a coal face[J]. Engineering Geology,2017,216:140−152.
[10] 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展[J]. 煤炭科学技术,2020,48(11):85−97
ZHANG Yujun,ZHANG Zhiwei. Research progress of mining overlying stratas failure law and control technology[J]. Coal Science and Technology,2020,48(11):85−97
[11] 黄万朋,高延法,王波,等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报,2017,34(2):330−335
HUANG Wanpeng,GAO Yanfa,WANG Bo,et al. Evolution rule and development height of permeable fractured zone under combined–strata structure[J]. Journal of Mining & Safety Engineering,2017,34(2):330−335
[12] 娄高中,谭毅. 基于PSO–BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探,2021,49(4):198−204
LOU Gaozhong,TAN Yi. Prediction of the height of water flowing fractured zone based on PSO−BP neural network[J]. Coal Geology & Exploration,2021,49(4):198−204
[13] 赵兵朝,刘樟荣,同超,等. 覆岩导水裂缝带高度与开采参数的关系研究[J]. 采矿与安全工程学报,2015,32(4):634−638
ZHAO Bingchao,LIU Zhangrong,TONG Chao,et al. Relation between height of water flowing fractured zone and mining parameters[J]. Journal of Mining & Safety Engineering,2015,32(4):634−638
[14] 许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380−385
XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380−385
[15] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762−769
XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water–conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762−769
[16] 曹祖宝,王庆涛. 基于覆岩结构效应的导水裂隙带发育特征[J]. 煤田地质与勘探,2020,48(3):145−151
CAO Zubao,WANG Qingtao. Development characteristics of water conducted fracture zone based on overburden structural effect[J]. Coal Geology & Exploration,2020,48(3):145−151
[17] 鞠金峰,马祥,赵富强,等. 东胜煤田导水裂隙发育及其分区特征研究[J]. 煤炭科学技术,2022,50(2):202−212
JU Jinfeng,MA Xiang,ZHAO Fuqiang,et al. Development and zoning characteristics of water−conducted fractures in Dongsheng Coalfield[J]. Coal Science and Technology,2022,50(2):202−212
[18] 王晓振,许家林,韩红凯,等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报,2019,44(12):3740−3749
WANG Xiaozhen,XU Jialin,HAN Hongkai,et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society,2019,44(12):3740−3749
[19] 李江华,王东昊,黎灵,等. 不同覆岩类型高强度采动裂隙发育特征对比研究[J]. 煤炭科学技术,2021,49(10):9−15
LI Jianghua,WANG Donghao,LI Ling,et al. Comparative study on development characteristics of high–intensive mining fissures in different overburden types[J]. Coal Science and Technology,2021,49(10):9−15
[20] 潘瑞凯,曹树刚,李勇,等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报,2018,43(8):2261−2268
PAN Ruikai,CAO Shugang,LI Yong,et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society,2018,43(8):2261−2268
[21] 张玉军,申晨辉,张志巍,等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术,2022,50(5):38−48
ZHANG Yujun,SHEN Chenhui,ZHANG Zhiwei,et al. Regional distribution law of water−conducting fractured zone height in high−strength mining of thick and extra−thick coal seams in China[J]. Coal Science and Technology,2022,50(5):38−48
[22] CHI Mingbo,ZHANG Dongsheng,LIU Honglin,et al. Simulation analysis of water resource damage feature and development degree of mining–induced fracture at ecologically fragile mining area[J]. Environmental Earth Sciences,2019,78:88.
[23] 王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京:科学出版社,2010.
[24] 王双明,黄庆享,范立民,等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报,2010,35(1):7−14
WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society,2010,35(1):7−14
[25] 赵春虎,靳德武,王皓,等. 榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J]. 煤炭学报,2019,44(7):2227−2235
ZHAO Chunhu,JIN Dewu,WANG Hao,et al. Construction and application of overburden damage and aquifer water loss model in medium−deep buried coal seam mining in Yushen mining area[J]. Journal of China Coal Society,2019,44(7):2227−2235
[26] 宋世杰,王双明,赵晓光,等. 基于覆岩层状结构特征的开采沉陷分层传递预计方法[J]. 煤炭学报,2018,43(增刊1):87−95
SONG Shijie,WANG Shuangming,ZHAO Xiaoguang,et al. Stratification transfer method of the mining subsidence based on the characteristics of layered structure in coal overburden[J]. Journal of China Coal Society,2018,43(Sup.1):87−95
Click below to download English version.
Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining.pdf (1321 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons