•  
  •  
 

Coal Geology & Exploration

Abstract

Analysis on the sedimentary environment of shale is of great significance for the evaluation of shale gas reservoir and the optimization of sweet spot. In order to deeply explore the depositional environment of organic-rich shale and the mechanism of organic matter accumulation in the Lower member of Zhongjiangou Formation of Wudun Sag in Dunhuang Basin, the TOC content, maceral composition, carbon isotope, major elements, trace elements and rare earth element were tested based on DY1 well. The results indicate that the lithologies of the Lower member of Zhongjiangou Formation in Wudun Sag are gray-black carbonaceous shale and silty shale with thin coal seam interlayer. The shale has a high TOC content, ranging from 0.53% to 25.25%, averaged 8.18%, with maturity Rran ranging from 0.74% to 1.21%. According to the Mo content, P/Ti ratio and the maceral composition of organic matter, the sedimentation water has low primarily productivity and the rich organic matter is mainly contributed by the terrestrial higher plants, which indicates that the paleoproductivity of shales in the environment of shallow water delta and semi-deep lake is not the major controlling factor of organic matter accumulation. V/(V+Ni), Ceanom, Th/U and the UEF-MoEF covariation reveals that the shale in the Lower member of Zhongjiangou Formation was developed in an anaerobic environment. The indicators such as Sr/Cu, Rb/Sr and climate index C reflect that the paleoclimate was warm to semi-arid. The characteristics of Sr/Ba, Ba/Ga. Ca/(Fe+Ca) and Al2O3/MgO suggest that the palaeo-water was fresh to brackish. Besides, Zr/Al, Rb/K and MnO indicate that the sedimentation water was in shallow to semi-deep depth. According to the relationship between the parameters of sedimentary environment and the accumulation of organic matter in DY1 well, sedimentary models of organic-rich shale in the Lower member of Zhongjianggou Formation were established, with two cycles and four sedimentary models experienced form bottom to top, the sedimentation water evolved from shallow delta to semi-deep lake deposition, and then to shallow delta to semi-deep lake deposition again. The organic-rich shale was formed in the semi-deep lake environment with low primary productivity and terrestrial higher plant input and anaerobic conditions, and the anaerobic condition is the key controlling factor for the accumulation of organic matter in the shale in the Lower member of Zhongjiangou Formation. Generally, this study provides theoretical support for Jurassic shale gas accumulation mechanism, resources potential evaluation and favorable area selection in Dunhuang Basin.

Keywords

geochemistry of element, organic matter characteristics, sedimentary environment, Lower member of Zhongjiangou Formation, Wudun Sag

DOI

10.12363/issn.1001-1986.22.05.0372

Reference

[1] 王红岩,刘德勋,蔚远江,等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探,2022,50(3):69−81

WANG Hongyan,LIU Dexun,YU Yuanjiang,et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology process and application[J]. Coal Geology & Exploration,2022,50(3):69−81

[2] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质,2015,36(1):1−6

WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology,2015,36(1):1−6

[3] 刘艳杰,程党性,邱庆伦,等. 南华北盆地下二叠统泥页岩孔隙特征及控制因素[J]. 天然气地球科学,2020,31(10):1501−1513

LIU Yanjie,CHENG Dangxing,QIU Qinglun,et al. Characteristics of pores controlling factors of Lower Permian shales in southern North China Basin[J]. Natural Gas Geoscience,2020,31(10):1501−1513

[4] 何治亮,聂海宽,李双建,等. 特提斯域板块构造约束下上扬子地区二叠系龙潭组页岩气的差异性赋存[J]. 石油与天然气地质,2021,42(1):1−15

HE Zhiliang,NIE Haikuan,LI Shuangjian,et al. Differential occurrence of shale gas in the Permian Longtan Formation of Upper Yangtze region constrained by plate tectonics in the Tethyan domain[J]. Oil & Gas Geology,2021,42(1):1−15

[5] 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11−18

GUO Xusheng,HU Dongfeng,LIU Ruobing,et al. Geological conditions and exploration potential of Permian marine–continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):11−18

[6] 孙则朋,王永莉,魏志福,等. 海陆过渡相页岩含气性及气体地球化学特征:以鄂尔多斯盆地山西组页岩为例[J]. 中国矿业大学学报,2017,46(4):859−868

SUN Zepeng,WANG Yongli,WEI Zhifu,et al. Shale gas content and geochemical characteristics of marine–continental transitional shale:A case from the Shanxi Formation of Ordos Basin[J]. Journal of China University of Mining & Technology,2017,46(4):859−868

[7] 王作华. 鄂西咸丰地区咸地2井上奥陶统五峰组–下志留统龙马溪组页岩沉积环境分析[J]. 中国煤炭地质,2020,32(8):32−37

WANG Zuohua. Well XD–2 Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation shale sedimentary environment analysis in Xianfeng area,Western Hubei[J]. Coal Geology of China,2020,32(8):32−37

[8] 郭岭,姜在兴,姜文利. 页岩气储层的形成条件与储层的地质研究内容[J]. 地质通报,2011,30(2/3):385−392

GUO Ling,JIANG Zaixing,JIANG Wenli. Formation condition of gas−bearing shale reservoir and its geological research target[J]. Geological Bulletin of China,2011,30(2/3):385−392

[9] 董大忠,邱振,张磊夫,等. 海陆过渡相页岩气层系沉积研究进展与页岩气新发现[J]. 沉积学报,2021,39(1):29−45

DONG Dazhong,QIU Zhen,ZHANG Leifu,et al. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica,2021,39(1):29−45

[10] 高德燚,平文文,胡宝林,等. 淮南煤田山西组泥页岩微量元素地球化学特征及其意义[J]. 煤田地质与勘探,2017,45(2):14−21

GAO Deyi,PING Wenwen,HU Baolin,et al. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan Coalfield and its significance[J]. Coal Geology & Exploration,2017,45(2):14−21

[11] 刘燕海,李琨杰,刘东娜,等. 沁水盆地新近纪张村组油页岩评价及古环境分析[J]. 煤田地质与勘探,2020,48(5):16−25

LIU Yanhai,LI Kunjie,LIU Dongna,et al. Evaluation and analysis of paleoenvironments of the Neogene oil shale of Zhangcun Formation,Qinshui Basin[J]. Coal Geology & Exploration,2020,48(5):16−25

[12] 柳忠泉,刘俊民,林中凯. 敦煌盆地有效烃源岩的发现及地质意义[J]. 甘肃地质,2016,25(4):50−55

LIU Zhongquan,LIU Junmin,LIN Zhongkai. Identification and geologic significance of effective source rocks in Dunhuang Basin[J]. Gansu Geology,2016,25(4):50−55

[13] 张敏,曹力伟. 五墩凹陷中–下侏罗统物源体系及沉积演化特征[J]. 长江大学学报(自科版),2017,14(19):8−12

ZHANG Min,CAO Liwei. The characteristics of Lower Jurassic source system and its sedimentary evolution in Wudun Sag[J]. Journal of Yangtze University (Natural Science Edition),2017,14(19):8−12

[14] 柳忠泉. 敦煌盆地侏罗系致密油地质特征及其意义[J]. 科学技术与工程,2019,19(12):81−89

LIU Zhongquan. Characteristics and significance of tight oil geology in Dunhuang Jurassic Basin[J]. Science Technology and Engineering,2019,19(12):81−89

[15] 黄立功,钟建华,郭泽清,等. 阿尔金造山带中、新生代的演化[J]. 地球学报,2004,25(3):287−294

HUANG Ligong,ZHONG Jianhua,GUO Zeqing,et al. Evolution of the Altun Orogenic Belt in the Mesozoic and Genozoic[J]. Acta Geoscientica Sinica,2004,25(3):287−294

[16] 许志琴,杨经绥,张建新,等. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J]. 地质学报,1999,73(3):193−205

XU Zhiqin,YANG Jingsui,ZHANG Jianxin,et al. A comparison between the tectonic units on the two sides of the Altun Sinistral Strike–slip fault and the mechanism of lithospheric shearing[J]. Acta Geologica Sinica,1999,73(3):193−205

[17] TAYLOR S R,MCLENNAN S M. The continental crust:Its composition and evolution:An examination of the geochemical record preserved in sedimentary rocks[M]. Oxford:Black Well Scientific Publications,1985.

[18] 董艳蕾,朱筱敏,韦敏鹏,等. 敦煌盆地五墩凹陷侏罗系层序地层格架与沉积体系分布[J]. 地学前缘,2021,28(1):177−189

DONG Yanlei,ZHU Xiaomin,WEI Minpeng,et al. Jurassic sequence framework and sedimentary system distribution in the Wudun Sag,Dunhuang Basin[J]. Earth Science Frontiers,2021,28(1):177−189

[19] 曹力伟. 敦煌盆地五墩凹陷周缘侏罗系露头沉积特征及油气勘探意义[J]. 石油地质与工程,2018,32(6):6−11

CAO Liwei. Sedimentary characteristics and the significance of oil and gas exploration of the outcrop of the Jurassic in the Wudun Sag[J]. Petroleum Geology and Engineering,2018,32(6):6−11

[20] 张学才,李家贵,刘全稳. 甘肃敦煌盆地五墩凹陷致密油成藏地质条件[J]. 地球科学与环境学报,2017,39(2):248−254

ZHANG Xuecai,LI Jiagui,LIU Quanwen. Geological conditions of tight oil reservoirs in Wudun Sag of Dunhuang Basin,Gansu,China[J]. Journal of Earth Sciences and Environment,2017,39(2):248−254

[21] 聂海宽,汪虎,何治亮,等. 常压页岩气形成机制、分布规律及勘探前景:以四川盆地及其周缘五峰组–龙马溪组为例[J]. 石油学报,2019,40(2):131−143

NIE Haikuan,WANG Hu,HE Zhiliang,et al. Formation mechanism,distribution and exploration prospect of normal pressure shale gas reservoir:A case study of Wufeng Formation–Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica,2019,40(2):131−143

[22] 汤冬杰,史晓颖,赵相宽,等. Mo–U共变作为古沉积环境氧化还原条件分析的重要指标:进展、问题与展望[J]. 现代地质,2015,29(1):1−13

TANG Dongjie,SHI Xiaoying,ZHAO Xiangkuan,et al. Mo–U covariation as an important proxy for sedimentary environment redox conditions:Progress,problems and prospects[J]. Geoscience,2015,29(1):1−13

[23] 彭媛媛,康志宏,李伟奇,等. 武威盆地石炭系泥页岩元素地球化学特征及意义[J]. 现代地质,2017,31(3):574−586

PENG Yuanyuan,KANG Zhihong,LI Weiqi,et al. Element geochemical characteristics of Carboniferous shale in Wuwei Basin and its significance[J]. Geoscience,2017,31(3):574−586

[24] HASKIN M A,HASKIN L A. Rare earths in European shales:A redetermination[J]. Science,1966,154:507−509.

[25] 赵晨君,康志宏,侯阳红,等. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义[J]. 地球科学,2020,45(11):4118−4127

ZHAO Chenjun,KANG Zhihong,HOU Yanghong,et al. Geochemical characteristics of rare earth elements and their geological significance of Permian shales in Lower Yangtze area[J]. Earth Science,2020,45(11):4118−4127

[26] 杨振恒,李志明,王果寿,等. 北美典型页岩气藏岩石学特征、沉积环境和沉积模式及启示[J]. 地质科技情报,2010,29(6):59−65

YANG Zhenheng,LI Zhiming,WANG Guoshou,et al. Enlightenment from petrology character,depositional environment and depositional model of typical shale gas reservoirs in North America[J]. Geological Science and Technology Information,2010,29(6):59−65

[27] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39−48

ZHANG Shuichang,ZHANG Baomin,BIAN Lizeng,et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers,2005,12(3):39−48

[28] 崔晨光,张辉,刘文香,等. 鄂尔多斯盆地东部本溪组一段泥页岩元素地球化学特征:以山西临县招贤剖面和M115井为例[J]. 天然气地球科学,2022,33(6):1001−1012

CUI Chenguang,ZHANG Hui,LIU Wenxiang,et al. Element geochemical characteristics of shale in the First member of Benxi Formation in eastern Ordos Basin:Take Zhaoxian section and well M115 in Linxian County,Shanxi as examples[J]. Natural Gas Geoscience,2022,33(6):1001−1012

[29] 林晓慧,詹兆文,邹艳荣,等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学,2019,48(1):67−78

LIN Xiaohui,ZHAN Zhaowen,ZOU Yanrong,et al. Elemental geochemical characteristics of the Lucaogou Formation oil shale in the southeastern Junggar Basin and its depositional environmental implications[J]. Geochimica,2019,48(1):67−78

[30] 杨恩林,吕新彪,鲍淼,等. 黔东下寒武统黑色页岩微量元素的富集及成因分析[J]. 地球科学进展,2013,28(10):1160−1169

YANG Enlin,LYU Xinbiao,BAO Miao,et al. Enrichment and origin of some trace elements in black shales from the Early Cambrian in Eastern Guizhou Province[J]. Advances in Earth Science,2013,28(10):1160−1169

[31] 孙莎莎,姚艳斌,吝文. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境[J]. 矿物岩石地球化学通报,2015,34(3):642−645

SUN Shasha,YAO Yanbin,LIN Wen. Elemental geochemical characteristics of the oil shale and the paleo–lake environment of the Tongchuan area,southern Ordos Basin[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(3):642−645

[32] 黄永建,王成善,汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘,2005,12(2):163−170

HUANG Yongjian,WANG Chengshan,WANG Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers,2005,12(2):163−170

[33] ALGEO T J,KUWAHARA K,SANO H,et al. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian–Triassic Panthalassic Ocean[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2011,38(1–2):65–83.

[34] 罗情勇,钟宁宁,朱雷,等. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报,2013,58(11):1036−1047

LUO Qingyong,ZHONG Ningning,ZHU Lei,et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation,northern North China[J]. Chinese Science Bulletin,2013,58(11):1036−1047

[35] 刘传联,徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报,2002,20(1):144−150

LIU Chuanlian,XU Jinli. Estimation method on productivity of oil–producing lake and a case study[J]. Acta Sedimentologica Sinica,2002,20(1):144−150

[36] 张琴,梁峰,王红岩,等. 页岩元素地球化学特征及古环境意义:以渝东南地区五峰–龙马溪组为例[J]. 中国矿业大学学报,2018,47(2):380−390

ZHANG Qin,LIANG Feng,WANG Hongyan,et al. Elements geochemistry and paleo sedimentary significance:A case study of the Wufeng–Longmaxi shale in southeast Chongqing[J]. Journal of China University of Mining & Technology,2018,47(2):380−390

[37] HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis limestone,Wabaunsee County,Kansas,U. S. A[J]. Chemical Geology,1992,99(1/2/3):65–82.

[38] ELDERFIELD H,GREAVES M J. The rare earth elements in seawater[J]. Nature,1982,296:214−219.

[39] PATTAN J N,PEARCE N J G,MISLANKAR P G. Constraints in using Cerium–anomaly of bulk sediments as an indicator of paleo bottom water redox environment:A case study from the Central Indian Ocean Basin[J]. Chemical Geology,2005,221(3/4):260–278.

[40] 杨绪海,郭巍,张佳音,等. 黑龙江东部延兴盆地下白垩统城子河组沉积时期古环境恢复[J]. 世界地质,2018,37(2):491−499

YANG Xuhai,GUO Wei,ZHANG Jiayin,et al. Paleoenvironment reconstruction of Lower Cretaceous Chengzihe Formation in Yanxing Basin,eastern Heilongjiang[J]. Global Geology,2018,37(2):491−499

[41] 王东营,汤达祯,苟明福,等. 准噶尔南缘阜康地区芦草沟组油页岩地质特征[J]. 中国石油勘探,2007(6):18−22

WANG Dongying,TANG Dazhen,GOU Mingfu,et al. Oil–shale geology of Lucaogou Formation in Fukang area on southern margin of Junggar Basin[J]. China Petroleum Exploration,2007(6):18−22

[42] 付勇,周文喜,王华建,等. 黔北下寒武统黑色岩系的沉积环境与地球化学响应[J]. 地质学报,2021,95(2):536−548

FU Yong,ZHOU Wenxi,WANG Huajian,et al. The relationship between environment and geochemical characteristics of black rock series of Lower Cambrian in northern Guizhou[J]. Acta Geologica Sinica,2021,95(2):536−548

[43] KUYPERS M M M,PANCOST R D,NIJENHUIS I A,et al. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the late Cenomanian oceanic anoxic event[J]. Paleoceanography and Paleoclimatology,2002,17(4):3-1–3-13.

[44] TRUBOVILLARD N,ALGEO T J,BAUDIN F,et al. Analysis of marine environmental conditions based on Molybdenum−Uranium covariation:Applications to Mesozoic Paleoceanography[J]. Chemical Geology,2021,324/325(9):46–58.

[45] 杨季华,罗重光,杜胜江,等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报,2020,40(6):723−733

YANG Jihua,LUO Chongguang,DU Shengjiang,et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica,2020,40(6):723−733

[46] 苗耀,桑树勋,林会喜,等. 渤海湾盆地石炭–二叠系微量元素特征及其指相意义[J]. 沉积与特提斯地质,2007,27(4):27−32

MIAO Yao,SANG Shuxun,LIN Huixi,et al. Trace element signatures of the Carboniferous–Permian deposits in the Bohai Gulf Basin and their facies significance[J]. Sedimentary Geology and Tethyan Geology,2007,27(4):27−32

[47] 王子玉,程安进,卓二军,等. 太湖全新世沉积物的古盐度指标及其环境意义[J]. 地层学杂志,1994,18(3):196−202

WANG Ziyu,CHENG Anjin,ZHUO Erjun,et al. Paleosalinity indicators in Holocene sediments of Taihu Lake and its environmental significance[J]. Journal of Stratigraphy,1994,18(3):196−202

[48] 许中杰,程日辉,王嘹亮,等. 南海北部陆缘早侏罗世海平面变化的古盐度记录[J]. 沉积学报,2009,27(6):1147−1154

XU Zhongjie,CHENG Rihui,WANG Liaoliang,et al. Paleosalinity records to sea level change of the northern margin of the South China Sea in Early Jurassic[J]. Acta Sedimentologica Sinica,2009,27(6):1147−1154

[49] 孟庆涛,李金国,刘招君,等. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版),2020,50(2):356−367

MENG Qingtao,LI Jinguo,LIU Zhaojun,et al. Organic geochemical characteristics and depositional environment of oil shale of Eocene of Paleocene Youganwo Formation in Yangjiao mining area of Maoming Basin[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):356−367

[50] CHEN Chao,MU Chuanlong,ZHOU Kenken,et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician–Early Silurian black shale in the Upper Yangtze Basin,South China[J]. Marine and Petroleum Geology,2016,76(9):159−175.

[51] 郑玉龙,王佰长,王占国,等. 松辽盆地嫩江组二段油页岩元素地球化学特征[J]. 地质论评,2015,61(增刊1):983−985

ZHENG Yulong,WANG Baizhang,WANG Zhanguo,et al. Elemental geochemical characteristics of oil shale in the second member of the Nenjiang Formation,Songliao Basin[J]. Geological Review,2015,61(Sup.1):983−985

[52] 金章东,张恩楼. 湖泊沉积物Rb/Sr比值的古气候含义[J]. 科学技术与工程,2002,2(3):20−22

JIN Zhangdong,ZHANG Enlou. Paleoclimate implication of Rb/Sr ratios from lake sediments[J]. Science Technology and Engineering,2002,2(3):20−22

[53] 关有志. 科尔沁沙地的元素、粘土矿物与沉积环境[J]. 中国沙漠,1992,12(1):9−15

GUAN Youzhi. The element,clay mineral and depositional environment in Horqin Sand Land[J]. Journal of Desert Research,1992,12(1):9−15

[54] MORADI A V,SARI A,AKKAYA P. Geochemistry of the Miocene oil shale (Hancili Formation) in the Cankiri–Corum Basin,Central Turkey:Implications for Paleoclimate conditions,source–area weathering,provenance and tectonic setting[J]. Sedimentary Geology,2016,341(7):289−303.

[55] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140−152

HU Tao,PANG Xiongqi,JIANG Fujie,et al. Factors controlling differential enrichment of organic matter in Saline Lacustrine Rift Basin:A case study of Third member Shahejie Formation in Dongpu depression[J]. Acta Sedimentologica Sinica,2021,39(1):140−152

[56] 郑一丁,雷裕红,张立强,等. 鄂尔多斯盆地东南部张家滩页岩元素地球化学、古沉积环境演化特征及油气地质意义[J]. 天然气地球科学,2015,26(7):1395−1404

ZHENG Yiding,LEI Yuhong,ZHANG Liqiang,et al. Characteristics of element geochemistry and paleo sedimentary environment evolution of Zhangjiatan shale in the southeast of Ordos Basin and its geological significance for oil and gas[J]. Natural Gas Geoscience,2015,26(7):1395−1404

[57] DAS B K,HAAKE B G. Geochemistry of Rewalsar Lake sediment,Lesser Himalaya,India:Implications for source−area weathering,provenance and tectonic setting[J]. Geosciences Journal,2003,7(4):299−312.

[58] 徐银波,李锋,张家强,等. 三塘湖盆地石头梅地区二叠系芦草沟组有机质富集特征[J]. 地质学报,2022:1–13 [2022-10-15]. https://doi.org/10.19762/j.cnki.dizhixuebao.2022280.

XU Yinbo,LI Feng,ZHANG Jiaqiang,et al. Enrichment characteristics of organic matter in Permian Lucaogou Formation in Shitoumei area,Santanghu Basin[J]. Acta Geologica Sinica,2022:1−13 [2022-10-15]. https://doi.org/10.19762/j.cnki.dizhixuebao.2022280.

[59] 谭昭昭,王伟明,李文浩,等. 泌阳凹陷核桃园组三段富有机质泥页岩形成环境及发育模式[J]. 沉积学报,2018,36(6):1256−1266

TAN Zhaozhao,WANG Weiming,LI Wenhao,et al. The sedimentary environment and deposition mode of organic–rich mudstone from the Third member of Hetaoyuan Formation in the Biyang depression[J]. Acta Sedimentologica Sinica,2018,36(6):1256−1266

[60] ZHANG Rui,JIANG Tao,TIAN Yuan,et al. Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms[J]. Geology,2017,45(8):679−682.

[61] LECKIE R M,BRALOWER T J,CASHMAN R. Oceanic Anoxic events and plankton evolution:Biotic response to tectonic forcing during the Mid–Cretaceous[J]. Paleoceanography and Paleoclimatology,2002,17(3):13-1–13-29.

[62] HOU Haihai,SHAO Longyi,LI Yonghong,et al. Effect of paleoclimate and paleoenvironment on organic matter accumulation in lacustrine shale:Constraints from lithofacies and element geochemistry in the northern Qaidam Basin,NW China[J]. Journal of Petroleum Science and Engineering,2022,208(PartA):109350.

[63] YANG Wei,ZUO Rusi,CHEN Dongxia,et al. Climate and tectonic−driven deposition of sandwiched continental shale units:New insights from petrology,geochemistry,and integrated provenance analyses (the Western Sichuan subsiding Basin,southwest China)[J]. International Journal of Coal Geology,2019,211:103227.

[64] 蔡利飘. 敦煌盆地五墩凹陷侏罗系沉积特征研究[D]. 青岛:中国石油大学(华东),2017.

CAI Lipiao. Study on sedimentary characteristics of Jurassic in Wudun Sag of Dunhuang Basin[D]. Qingdao:China University of Petroleum,2017.

[65] 刘鹏飞. 敦煌盆地侏罗系页岩气成藏条件研究[D]. 西安:长安大学,2018.

LIU Pengfei. The study on gas reservoir forming conditions of Permian shale in Dunhuang Basin[D]. Xi’an:Chang’an University,2018.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.