Coal Geology & Exploration
Abstract
Rescue through large-diameter relief well is an efficient method of mine emergency rescue. The lifting equipment of large-diameter relief well is used to lift the trapped personnel safely and reliably to the surface through the large-diameter relief well. It is the key equipment in the rescue system of large-diameter relief well. With the rescue technology of large-diameter relief well gradually recognized in the industry, the lifting equipment of large-diameter relief well has developed considerably, forming the fixed and mobile types of lifting equipment and multiple technical routes. Besides, important progress has been made in the research on the lifting equipment of mobile large-diameter relief well in China. According to the functional modules, the lifting equipment of large-diameter relief well is divided into three parts: the lifting platform, the lifting cabin, and the lifting information system. The research achievements were summarized, involving the types of the transport system of rescue lifting platform, the structure of lifting support system, the drum structure and brake system of the winch lifting system, wire rope anti-rotation technology and online defect detection technology, the structure of lifting cabin, the information fusion technology for lifting process, the structure parameter detection of the relief well and 3D model reconstruction technology. It is pointed out that the lifting platform of large-diameter relief well based on the large-tonnage all-terrain crane could better adapt to the accidental and random needs of the rescue lifting process through its strong capability, good site adaptability, and convenient and stable lifting. Besides, the flexible and bendable structure design of the rescue lift cabin can significantly improve the passing capacity. Moreover, the information fusion of the large-diameter relief well, lifting cabin, and rescue lifting platform is the basis for scientific operation and decision-making in the lifting process, and digital twinning of the rescue lifting process is the future development direction of lifting equipment for large-diameter relief well.
Keywords
large-diameter borehole rescue,lifting equipment,lifting platform,lifting cabin,information detection,model reconstruction.
DOI
10.12363/issn.1001-1986.22.06.0441
Recommended Citation
GU Hairong, SHAN Zenghai, WANG Longpeng,
et al.
(2022)
"Research progress of lifting equipment for large-diameter borehole rescue,"
Coal Geology & Exploration: Vol. 50:
Iss.
11, Article 6.
DOI: 10.12363/issn.1001-1986.22.06.0441
Available at:
https://cge.researchcommons.org/journal/vol50/iss11/6
Reference
[1] 高广伟,张禄华. 大直径钻孔救援的实践与思考:以山东平邑“12·25”石膏矿坍塌事故救援为例[J]. 中国应急管理,2016(3):74−75
GAO Guangwei,ZHANG Luhua. Practice and thinking of large diameter drilling rescue:A case study of“12·25” Gypsum Mine collapse in Pingyi,Shandong Province[J]. China Emergency Management,2016(3):74−75
[2] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5−9
WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5−9
[3] 谢涛,陈林. 矿山事故钻孔救援技术及配套提升装备的研制[J]. 起重运输机械,2015(2):69−74
XIE Tao,CHEN Lin. Development of drilling rescue technology and supporting lifting equipment in mine accident[J]. Lifting the Transport Machinery,2015(2):69−74
[4] 刘庆修,邹祖杰,凡东,等. ZMK5200QJY40型矿用救援提升车[J]. 煤矿安全,2017,48(2):117−119
LIU Qingxiu,ZOU Zujie,FAN Dong,et al. ZMK5200QJY40 type mine–used rescue hoister[J]. Safety in Coal Mines,2017,48(2):117−119
[5] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33
TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33
[6] 黄志凌. 王家岭矿钻孔逃生救援系统研究与应用[D]. 北京:北京科技大学,2016.
HUANG Zhiling. Research and application of borehole rescue system in Wangjialing Coal Mine[D]. Beijing:University of Science and Technology Beijing,2016.
[7] 丁慧. 垂直救援提升系统救援舱与井架设计[D]. 太原:太原理工大学,2016.
DING Hui. Design of rescue capsule and derrick for vertical rescue lifting system[D]. Taiyuan:Taiyuan University of Technology,2016.
[8] 赤文林. 矿井垂直救援绳缆提升系统的研究[D]. 太原:太原理工大学,2015.
CHI Wenlin. Research on mine vertical rescue rope hoisting system[D]. Taiyuan:Taiyuan University of Technology,2015.
[9] 刘庆修. 大直径深孔载人救援提升装备关键技术研究 [D]. 北京:煤炭科学研究总院,2019.
LIU Qingxiu. Key technology research on manned rescue lifting equipment for deep hole with large diameter[D]. Beijing:China Coal Research Institute,2019.
[10] 邹祖杰,凡东,刘庆修,等. 矿山地面大直径钻孔救援提升装备研制[J]. 煤炭科学技术,2017,45(12):160−165
ZOU Zujie,FAN Dong,LIU Qingxiu,et al. Research and development on rescue lifting equipment of large diameter borehole at mine ground[J]. Coal Science and Technology,2017,45(12):160−165
[11] 于祥欢,孙大刚,何成林. 九轴全地面起重机转向模式及其性能研究[J]. 太原科技大学学报,2017,38(4):283−288
YU Xianghuan,SUN Dagang,HE Chenglin. Researching on the steering mode and performances of the nine–axis full ground crane[J]. Journal of Taiyuan University of Science and Technology,2017,38(4):283−288
[12] 涂佳玮. 柔性动臂式汽车起重机起落钩修正与重物消摆技术研究[D]. 哈尔滨:哈尔滨工业大学,2012.
TU Jiawei. Technical research on flexible arm crane truck ups and downs hook correction and load anti–sway[D]. Harbin:Harbin Institute of Technology,2012.
[13] 张清哲. 矿井救援提升车吊臂挠度变形与平顺提升方法研究[D]. 西安:长安大学,2020.
ZHANG Qingzhe. Research on deflection deformation of boom and smooth lifting method in mine rescue hoist truck[D]. Xi’an:Chang’an University,2020.
[14] WU Shuiyuan,HE Ping,GONG Xiansheng. Transverse vibration analysis of wire rope in deep mining hoisting system[J]. Journal of Vibroengineering,2021,23(5):1079−1094.
[15] 张鹏. 超深矿井提升系统钢丝绳多层缠绕关键问题的研究[D]. 重庆:重庆大学,2015.
ZHANG Peng. Research on the key problems of multi–layer winding of wire rope in the hoisting system of the ultra–deep mine[D]. Chongqing:Chongqing University,2015.
[16] MUSHIRI T,JIRIVENGWA M,MBOHWA C. Design of a hoisting system for a small scale mine[J]. Procedia Manufacturing,2017,8:738−745.
[17] 陈能诵. 工程机械在矿难应急抢险救援中[J]. 建设机械技术与管理,2011,24(12):73−77
CHEN Nengsong. Construction machinery in mining accident and emergency rescues[J]. Construction Machinery Technology & Management,2011,24(12):73−77
[18] 温毅. 垂直井筒紧急救援用液压提升绞车系统研究[D]. 太原:太原理工大学,2018.
WEN Yi. Research on hydraulic lifting winch system for emergency rescue in vertical pit shaft[D]. Taiyuan:Taiyuan University of Technology,2018.
[19] 高慧芳. 垂直井筒紧急救援用提升绞车制动装置的研究[D]. 太原:太原理工大学,2019.
GAO Huifang. Research on brake device of lifting winch for emergency rescue of vertical shaft[D]. Taiyuan:Taiyuan University of Technology,2018.
[20] POPESCU F D,RADU S M,ANDRAS A,et al. Numerical modeling of mine hoist disc brake temperature for safer operation[J]. Sustainability,2021,13(5):2874.
[21] 葛建兵,龚宪生,彭霞,等. 矿井提升机多层缠绕卷筒的振动特性[J]. 东北大学学报(自然科学版),2022,43(4):551−558
GE Jianbing,GONG Xiansheng,PENG Xia,et al. Vibration characteristics of multi−layer winding drum of mine hoists[J]. Journal of Northeastern University (Natural Science),2022,43(4):551−558
[22] 葛建兵,龚宪生,彭霞,等. 新型双折线绳槽结构设计与实验研究[J]. 东北大学学报(自然科学版),2019,40(7):997−1001
GE Jianbing,GONG Xiansheng,PENG Xia,et al. Structural design and experimental research of new double folded groove[J]. Journal of Northeastern University (Natural Science),2019,40(7):997−1001
[23] 李晓光,龚宪生,吴水源,等. 超深矿井提升机多层缠绕钢丝绳圈间过渡对钢丝绳动张力的影响研究[J]. 振动与冲击,2017,36(19):250−254
LI Xiaoguang,GONG Xiansheng,WU Shuiyuan,et al. Influence of rope circle transition on the dynamic tension of multi layer winding wire ropes in super deep mine hoisting machines[J]. Journal of Vibration and Shock,2017,36(19):250−254
[24] 彭霞. 超深矿井提升机多层缠绕机理与圈间过渡设计理论[D]. 重庆:重庆大学,2018.
PENG Xia. Mechanism of the multi–layer winding drum and the theory on crossover design in deep mine hoisting[D]. Chongqing:Chongqing University,2018.
[25] 罗琰峰,林贵瑜,王万振. 起重机双折线卷筒的相关参数研究与确定[J]. 建筑机械,2016(1):58−64
LUO Yanfeng,LIN Guiyu,WANG Wanzhen. Research and determination of the related parameters for double line reel of crane[J]. Construction Machinery,2016(1):58−64
[26] YAO Jiannan,DENG Xiaojie,MA Chi,et al. Investigation of dynamic load in superdeep mine hoisting systems induced by drum winding[J]. Shock and Vibration,2021,2021:1−13.
[27] POPESCU F D,RADU S M,ANDRAȘ A,et al. Comparative analysis of mine shaft hoisting systems’ brake temperature using finite element analysis(FEA)[J]. Materials,2022,15(9):3363.
[28] 杨晓峰,陶海波,游小杰,等. 应用于矿井提升机系统的超级电容储能型MMC[J]. 电源学报,2020,18(1):96−103
YANG Xiaofeng,TAO Haibo,YOU Xiaojie,et al. Super capacitor energy storage based MMC applied to mine hoist system[J]. Journal of Power Supply,2020,18(1):96−103
[29] 时彬彬. 矿井提升机液压制动系统双通道恒减速控制策略研究[D]. 徐州:中国矿业大学,2018.
SHI Binbin. Research on dual–channel constant deceleration control of mine hoist hydraulic brake system[D]. Xuzhou:China University of Mining and Technology,2018.
[30] 秦万信,白成海. 关于我国多股抗旋转钢丝绳发展方向的思考(续完)[J]. 金属制品,2016,42(6):6−14
QIN Wanxin,BAI Chenghai. Thinking about development direction of multi−strand counter−rotation wire rope of China (the end)[J]. Metal Products,2016,42(6):6−14
[31] 秦万信,白成海. 关于我国多股抗旋转钢丝绳发展方向的思考(待续)[J]. 金属制品,2016,42(5):5−12
QIN Wanxin,BAI Chenghai. Thinking about development direction of multi−strand counter−rotation wire rope of China (to be continued)[J]. Metal Products,2016,42(5):5−12
[32] 高鑫宇,李琳,王松岩. 深井提升钢丝绳动态扭转特性研究[J]. 中国矿业,2018,27(4):159−162
GAO Xinyu,LI Lin,WANG Songyan. Research on dynamic torsional characteristics of deep well hoisting rope[J]. China Mining Magazine,2018,27(4):159−162
[33] 邓海燕,顾小建. 提升用多股钢丝绳抗旋转性能影响因素研究[J]. 金属制品,2020,46(2):10−17
DENG Haiyan,GU Xiaojian. Research on influencing factors of rotation–resistant performance of multi–strand rope for lifting[J]. Metal Products,2020,46(2):10−17
[34] 陈科安. 基于漏磁机理的钢丝绳缺陷智能化识别系统研究[D]. 赣州:江西理工大学,2022.
CHEN Ke’an. Research on intelligent recognition system of wire rope defect based on magnetic flux leakage mechanism[D]. Ganzhou:Jiangxi University of Science and Technology,2022.
[35] 周俊莹. 基于磁探伤原理的矿用钢丝绳局部缺陷检测方法研究[D]. 北京:中国矿业大学(北京),2019.
ZHOU Junying. Research on local defect detection method of mine wire rope based on the principle of magnetic[D]. Beijing:China University of Mining & Technology (Beijing),2019.
[36] 聂林. 面向载荷变化的钢丝绳缺陷声发射检测特性分析与研究[D]. 杭州:中国计量学院,2014.
NIE Lin. Analysis and research of load change characteristics of wire rope defects detection based on acoustic emission[D]. Hangzhou:China Jiliang University,2014.
[37] 卢帆兴,王琪. 矿山竖井提升机钢丝绳表面缺陷监测系统[J]. 工业控制计算机,2012,25(6):32−33
LU Fanxing,WANG Qi. Moniting system of mine shaft elevator steel wire surface defects[J]. Industrial Control Computer,2012,25(6):32−33
[38] MURPHY D,GARNER A,BISHOP R. Respiratory function in hoist rescue:Comparing slings,stretcher,and rescue basket[J]. Aviation,Space,and Environmental Medicine,2011,82(2):123−127.
[39] HAAGENSEN R,SJBORG K,MJELSTAD S,et al. Lung function during hoist rescue operations[J]. Prehospital and Disaster Medicine,1998,13(1):65−68.
[40] 张帆,葛世荣,李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术,2020,48(7):168−176
ZHANG Fan,GE Shirong,LI Chuang. Research summary on digital twin technology for smart mines[J]. Coal Science and Technology,2020,48(7):168−176
[41] 房屹松. 矿井钻孔救援监控系统的研究与开发[D]. 西安:西安科技大学,2015.
FANG Yisong. Research and development of surveillance system based on drilling rescue[D]. Xi’an:Xi’an University of Science and Technology,2015.
[42] 金永飞,徐精彩,郑学召. 基于双绞线通信技术的矿山应急救援系统的研究[J]. 矿业安全与环保,2006,33(3):70−71
JIN Yongfei,XU Jingcai,ZHENG Xuezhao. Study on emergency rescue of mines based on twisted pair of communication[J]. Mining Safety & Environmental Protection,2006,33(3):70−71
[43] 郑学召,王虎,文虎,等. 矿井钻孔救援通信技术的研究进展及趋势[J]. 工矿自动化,2017,43(9):41−45
ZHENG Xuezhao,WANG Hu,WEN Hu,et al. Research progress and tendency of mine drilling rescue communication technology[J]. Industry and Mine Automation,2017,43(9):41−45
[44] 金永飞,邓军,文虎. 基于SDSL传输技术的煤矿多媒体救灾系统研究[J]. 中国安全科学学报,2007,17(6):125−128
JIN Yongfei,DENG Jun,WEN Hu. Research on multi–media emergency rescue system in coalmine based on SDSL communication technology[J]. China Safety Science Journal,2007,17(6):125−128
[45] 刘庆修,田宏亮,田东庄,等. 载人救援提升装备多功能钢丝绳研发与试验研究[J]. 煤矿机械,2020,41(11):38−40
LIU Qingxiu,TIAN Hongliang,TIAN Dongzhuang,et al. Development and experimental research on multi–functional wire rope for manned rescue lifting equipment[J]. Coal Mine Machinery,2020,41(11):38−40
[46] 张文泉,张永双,席京德,等. 煤矿立井井壁破裂的机制及防治措施[J]. 中国地质灾害与防治学报,2001,12(4):13−17
ZHANG Wenquan,ZHANG Yongshuang,XI Jingde,et al. The mechanism of sidewall cracking in vertical well of coal mine and its prevention countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2001,12(4):13−17
[47] BUJAKOWSKI W,BIELEC B,MIECZNIK M,et al. Reconstruction of geothermal boreholes in Poland[J]. Geothermal Energy,2020,8:10.
[48] 顾海荣,郭项伟,徐信芯,等. 基于最小二乘圆法的救援井井径动态测量系统设计[J]. 实验室研究与探索,2021,40(8):78−82
GU Hairong,GUO Xiangwei,XU Xinxin,et al. Design of rescue shaft diameter dynamic measurement system based on least squares circle method[J]. Research and Exploration in Laboratory,2021,40(8):78−82
[49] 顾海荣,张雅倩,叶敏,等. 立井井筒动态监测软件的设计与实现[J]. 实验室研究与探索,2020,39(12):33−36
GU Hairong,ZHANG Yaqian,YE Min,et al. Design and realization of vertical shaft dynamic monitoring software[J]. Research and Exploration in Laboratory,2020,39(12):33−36
[50] 马福义,赵喜江,张在岩,等. 基于三维激光扫描技术的竖井井筒变形分析方法[J]. 中国矿业,2019,28(增刊1):72−75
MA Fuyi,ZHAO Xijiang,ZHANG Zaiyan,et al. Shaft deformation analysis method based on 3D laser scanning technology[J]. China Mining Magazine,2019,28(Sup.1):72−75
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons