Coal Geology & Exploration
Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear
Abstract
Stress relaxation often occurs in the saturated soft clay with poor water permeability under the actual working condition at fast construction speed (fast loading rate), which brings huge hidden dangers to the safe operation of engineering practice. Herein, the unconsolidated undrained triaxial shear test was performed based on the soft dredger fill in Tianjin Binhai using the WF stress path triaxial instrument, and the influence law of such factors as the different initial strain, confining pressure, shear rate, sampling depth and structural properties of the soft dredger fill on its stress relaxation characteristics was analyzed accordingly. According to the test results, the stress relaxation process of soft dredger fill in coastal region of Tianjin under different test conditions can be divided into the fast, slow and stable stages. The rate of stress relaxation increases with the increasing initial strain and sampling depth, but slightly affected by the confining pressure and shear rate. Besides, the enhancement of soil structure will significantly increase the rate of stress relaxation, thus exacerbating the stress relaxation. Moreover, it is determined through comparative analysis that the power function model is more suitable to describe the change law of stress relaxation of soft dredger fill under different test conditions. Generally, the research results have important practical significance for the safe construction and operation of soft dredger fill site in coastal region of Tianjin.
Keywords
soft dredger soil, stress relaxation, initial strain, shear rate, structural, influence law
DOI
10.12363/issn.1001-1986.22.03.0121
Recommended Citation
YANG Aiwu, YANG Shaopeng, QI Jiejie,
et al.
(2022)
"Experimental study on stress relaxation characteristics of soft dredger fill under UU triaxial shear,"
Coal Geology & Exploration: Vol. 50:
Iss.
10, Article 9.
DOI: 10.12363/issn.1001-1986.22.03.0121
Available at:
https://cge.researchcommons.org/journal/vol50/iss10/9
Reference
[1] 杜东菊,杨爱武,刘举,等. 天津滨海吹填土[M]. 北京:科学出版社,2010.
[2] 杨爱武,郭飞,杜东菊. 考虑结构性与排水条件的吹填软土的流变特性[J]. 煤田地质与勘探,2013,41(2):54−59
YANG Aiwu,GUO Fei,DU Dongju. Rheological characteristics considering structure and drainage condition of the soft dredger fill[J]. Coal Geology & Exploration,2013,41(2):54−59
[3] 杨爱武,刘琦,闫澍旺,等. 结构性吹填软土流变等时曲线研究[J]. 煤田地质与勘探,2012,40(6):58−62
YANG Aiwu,LIU Qi,YAN Shuwang,et al. Rheological isochronous curve of the structural soft dredger fill[J]. Coal Geology & Exploration,2012,40(6):58−62
[4] 孙钧. 岩土材料流变及其工程应用[M]. 北京:中国建筑工业出版社,1999.
[5] 王念秦,罗东海,姚勇,等. 马兰黄土动强度及其微结构变化实验[J]. 工程地质学报,2011,19(4):467−471
WANG Nianqin,LUO Donghai,YAO Yong,et al. Dynamic strength and microstructure change of Malan loess under triaxal cyclic loading[J]. Journal of Engineering Geology,2011,19(4):467−471
[6] MURAYAMA S. Rheological properties of clay[J]. Journal of the Society of Materials Science Japan,1963,12(113):72−78.
[7] LADANYI B,MELOUKI M. Determination of creep properties of frozen soils by means of the borehole stress relaxation test[J]. Canadian Geotechnical Journal,1993,30(1):170−186.
[8] 吴紫汪,马巍. 冻土强度与蠕变[M]. 兰州:兰州大学出版社,1994.
[9] 彭芳乐,李福林,李建中,等. 加载速率变化条件下砂土的黏塑特性及本构模型[J]. 岩石力学与工程学报,2008,27(8):1576−1585
PENG Fangle,LI Fulin,LI Jianzhong,et al. Viscoplastic behaviors and constitutive modeling of sands under change of loading rates[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1576−1585
[10] AKAI K,ADACHI T,ANDO N. Existence of a unique stress−strain−time relation of clays[J]. Soils and Foundations,1975,15(1):1−16.
[11] ODA Y,MITACHI T. Stress relaxation characteristics of saturated clays[J]. Soils and Foundations,1988,28(4):69−80.
[12] 张春晓,肖宏彬,包嘉邈,等. 膨胀土应力松弛的分数阶模型[J]. 岩土力学,2018,39(5):1747−1752
ZHANG Chunxiao,XIAO Hongbin,BAO Jiamiao,et al. Stress relaxation model of expansive soils based on fractional calculus[J]. Rock and Soil Mechanics,2018,39(5):1747−1752
[13] 崔德山,陈琼,项伟,等. 黄土坡滑坡饱和滑带土三轴压缩应力松弛试验研究[J]. 岩土力学,2018,39(增刊2):209−216
CUI Deshan,CHEN Qiong,XIANG Wei,et al. Experimental study of stress relaxation characteristics of saturated sliding zone soils of Huangtupo landslide under triaxial compression[J]. Rock and Soil Mechanics,2018,39(Sup.2):209−216
[14] ZOLOTAREVSKAYA D I. Mathematical modeling of relaxation processes in soils[J]. Eurasian Soil Science,2003,36(4):388−397.
[15] 王松鹤,齐吉琳. 高温冻土松弛特性试验研究[J]. 岩土力学,2012,33(6):1660−1666
WANG Songhe,QI Jilin. Experimental study of relaxation characteristics of warm permafrost[J]. Rock and Soil Mechanics,2012,33(6):1660−1666
[16] 肖宏彬,贺聪,周伟,等. 南宁膨胀土非线性剪切应力松弛特性试验[J]. 岩土力学,2013,34(增刊1):22−27
XIAO Hongbin,HE Cong,ZHOU Wei,et al. Experimental study of nonlinear shear stress relaxation characteristics of Nanning expansive soil[J]. Rock and Soil Mechanics,2013,34(Sup.1):22−27
[17] 王志俭,殷坤龙,简文星,等. 万州安乐寺滑坡滑带土松弛试验研究[J]. 岩石力学与工程学报,2008,27(5):931−937
WANG Zhijian,YIN Kunlong,JIAN Wenxing,et al. Experimental research on stress relaxation of slip zone soils for Anlesi landslide in Wanzhou City[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(5):931−937
[18] 田光辉,沈明荣,李彦龙,等. 锯齿状结构面剪切松弛特性及本构方程参数分析[J]. 工业建筑,2016,46(9):87−92
TIAN Guanghui,SHEN Mingrong,LI Yanlong,et al. Shear relaxation characteristics and parametric analysis of shear relaxation constitutive equation of serrated rock mass discontinuity[J]. Industrial Construction,2016,46(9):87−92
[19] ALEXANDRE G,MARTINS I. Stress relaxation under various stress and drainage conditions[J]. Archive Ouverte HAL,2012:1−54.
[20] TONG Fei,YIN Jianhua. Experimental and constitutive modeling of relaxation behaviors of three clayey soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(11):1973−1981.
[21] 高彦斌,刘佳丹. 黏性土一维松弛及其与次压缩的关系[J]. 岩土工程学报,2019,41(增刊2):49−52
GAO Yanbin,LIU Jiadan. One–dimensional stress relaxation of cohesive soils and its relationship with secondary compression[J]. Chinese Journal of Geotechnical Engineering,2019,41(Sup.2):49−52
[22] 中华人民共和国水利部,中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019.
[23] 杨爱武,苟乐宇,张振东. 循环荷载作用下结构性软土微结构演化特性试验研究[J]. 岩石力学与工程学报,2017,36(1):234−242
YANG Aiwu,GOU Leyu,ZHANG Zhendong. Experimental research on microstructure characteristics of structural soft clays under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(1):234−242
[24] 杨爱武,张卫. 基于两种波形作用结构性软黏土动力特性试验研究[J]. 工程地质学报,2017,25(6):1395−1404
YANG Aiwu,ZHANG Wei. Experimental study on dynamic properties of structural soft clay based on two kinds of waveform[J]. Journal of Engineering Geology,2017,25(6):1395−1404
[25] 李广信. 高等土力学[M]. 北京:清华大学出版社,2004.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons