Coal Geology & Exploration
Abstract
A large amount of coal gangue generated during coal production and processing is piled up on the surface, which not only causes land occupation and soil erosion, but also causes geological disasters such as landslides and debris flows. So it has a serious impact on the ecological environment of the mining area. The cumulative stockpile of coal gangue in China has exceeded 6 billion tons, accounting for 13000 hectares of land. In 2020, the output of coal gangue in China is 729 million tons, the comprehensive utilization is 526 million tons, and the comprehensive utilization rate is 72.2%. At present, the comprehensive utilization of coal gangue in China has the characteristics of large stock and emission, highly concentrated output, low comprehensive utilization rate, extremely unbalanced regional development and small proportion of high value-added utilization. The scale and capacity of harmless disposal and resource-based comprehensive utilization of existing coal gangue obviously cannot meet the relevant national requirements for ecological environment protection and comprehensive utilization of coal under the goal of carbon peak and carbon neutral. In this regard, the large-scale harmless disposal technologies and methods of coal gangue in goaf filling, ground foundation building, subsidence pit backfilling and land reclamation are put forward. It is pointed out that the most effective methods of control the increment of coal gangue and reduce the stock of coal gangue on a large scale are the underground “mining, selection, filling and retention” integrated solid filling mining and goaf ground paste and slurry filling. The comprehensive resource utilization ways of coal gangue in power generation, building materials, resource recovery, chemical product preparation and agriculture is elaborated, and puts forward the closed cycle industrial chain model of “coal solid waste power generation-valuable element extraction-chemical products-building materials-underground filling-ground backfilling-agricultural application”. The future industrialization development direction of coal gangue with a large-scale disposal and comprehensive utilization system of “multi-channel, multi-component, multi-level+cascade recovery+ecological restoration+storage protection+underground efficient automatic filling” has been established.
Keywords
coal gangue, harmless disposal, comprehensive utilization of resource, filling, electricity generation, high performance, industrialization, prospect
DOI
10.12363/issn.1001-1986.21.11.0614
Recommended Citation
W.
(2022)
"Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue,"
Coal Geology & Exploration: Vol. 50:
Iss.
10, Article 7.
DOI: 10.12363/issn.1001-1986.21.11.0614
Available at:
https://cge.researchcommons.org/journal/vol50/iss10/7
Reference
[1] 周楠,姚依南,宋卫剑,等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报,2020,37(1):136−146
ZHOU Nan,YAO Yinan,SONG Weijian,et al. Present situation and prospect of coal gangue treatment technology[J]. Journal of Mining & Safety Engineering,2020,37(1):136−146
[2] 杨方亮,许红娜. “十四五”煤炭行业生态环境保护与资源综合利用发展路径分析[J]. 中国煤炭,2021,47(5):73−82
YANG Fangliang,XU Hongna. Analysis on the development path of ecological environment protection and resources comprehensive utilization in coal industry during the 14th Five−Year Plan period[J]. China Coal,2021,47(5):73−82
[3] 李小炯. 我国煤炭资源清洁高效利用现状及对策建议[J]. 煤炭经济研究,2019,39(1):71−75
LI Xiaojiong. Status and countermeasures of clean and efficient utilization of coal resources in China[J]. Coal Economic Research,2019,39(1):71−75
[4] 李俊孟. 矸石固废充填材料承载压缩三维组构时空演化及其透明化表征[D]. 徐州:中国矿业大学,2020.
LI Junmeng. 3D fabric spatiotemporal evolution characteristics and transparent characterization of gangue solid waste backfilling material during compression[D]. Xuzhou:China University of Mining and Technology,2020.
[5] 练伟. 煤矸石为原料制备莫来石及复相陶瓷的力学性能研究[D]. 淮南:安徽理工大学,2021.
LIAN Wei. Mechanical properties of mullite and multiphase ceramics prepared from coal gangue[D]. Huainan:Anhui University of Science and Technology,2021.
[6] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用,2019,39(4):46−52
JIA Min. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2019,39(4):46−52
[7] 田莉,于晓萌,秦津. 煤矸石资源化利用途径研究进展[J]. 河北环境工程学院学报,2020,30(5):31−36
TIAN Li,YU Xiaomeng,QIN Jin. Research progress in utilization of coal gangue resources[J]. Journal of Hebei University of Environmental Engineering,2020,30(5):31−36
[8] 王长根. 关于煤矸石分类和命名问题的探讨[J]. 煤炭科学技术,1983,11(6):42−45
WANG Changgen. Discussion on the classification and naming of coal gangue[J]. Coal Science and Technology,1983,11(6):42−45
[9] 卞正富,金丹,董霁红,等. 煤矿矸石处理与利用的合理途径探讨[J]. 采矿与安全工程学报,2007,24(2):132−136
BIAN Zhengfu,JIN Dan,DONG Jihong,et al. Discussion on rational ways for coal gangue treatment and utilization[J]. Journal of Mining & Safety Engineering,2007,24(2):132−136
[10] 王国平,孙传敏. 浅论煤矸石资源化及其分类[J]. 煤炭经济研究,2004,4(5):19−20
WANG Guoping,SUN Chuanmin. Discussion on resource utilization and classification of coal gangue[J]. Coal Economic Research,2004,4(5):19−20
[11] 杨旭,周家喜. 贵州遵义地区煤矸石元素地球化学特征及其综合利用信息[J]. 矿物学报,2013,33(2):189−193
YANG Xu,ZHOU Jiaxi. Element geochemistry and comprehensive utilization of coal gangue,Zunyi City,Guizhou Province,China[J]. Acta Mieralogica Sinica,2013,33(2):189−193
[12] 蔡峰,刘泽功,林柏泉,等. 淮南矿区煤矸石中微量元素的研究[J]. 煤炭学报,2008,33(8):892−897
CAI Feng,LIU Zegong,LIN Boquan,et al. Study on trace elements in gangue in Huainan mining area[J]. Journal of China Coal Society,2008,33(8):892−897
[13] 刘海滨,胡振琪. 矸石的特性及风化机理探讨[J]. 煤矿环境保护,1995,9(6):43−45
LIU Haibin,HU Zhenqi. Characteristics and weathering mechanism of gangue[J]. Coal Mine Environmental Protection,1995,9(6):43−45
[14] 黄艳利,王文峰,卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术,2021,49(1):319−330
HUANG Yanli,WANG Wenfeng,BIAN Zhengfu. Prospects of resource utilization and disposal of coal−based solid wastes in Xinjiang[J]. Coal Science and Technology,2021,49(1):319−330
[15] 张吉雄. 矸石直接充填综采岩层移动控制及其应用研究[D]. 徐州:中国矿业大学,2008.
ZHANG Jixiong. Study on strata movement controlling by raw waste backfilling with fully−mechanized coal winning technology and its engineering applications[D]. Xuzhou:China University of Mining and Technology,2008.
[16] 邓少霞,薛群虎. 白水煤矿煤矸石基本性能研究与分析[J]. 矿物岩石,2010,30(3):34−37
DENG Shaoxia,XUE Qunhu. Research and analysis on the essential performance of gangue from Baishui coal[J]. Mineralogy and Petrology,2010,30(3):34−37
[17] 郑钧笛. 韩城矿区煤矸石综合利用的途径[J]. 煤炭加工与综合利用,1995,4(6):12−13
ZHENG Jundi. The way of comprehensive utilization of coal gangue in Hancheng mining area[J]. Coal Processing & Comprehensive Utilization,1995,4(6):12−13
[18] 郭洋楠,李能考,何瑞敏. 神东矿区煤矸石综合利用研究[J]. 煤炭科学技术,2014,42(6):144−147
GUO Yangnan,LI Nengkao,HE Ruimin. Study on comprehensive utilization of coal refuse in Shendong mining area[J]. Coal Science and Technology,2014,42(6):144−147
[19] LI Yu,YAO Yuan,LIU Xiaoming,et al. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation[J]. Fuel,2013,109:527−533.
[20] ZHANG Luyi,ZHANG Huayong,GUO Wei,et al. Sorption characteristics and mechanisms of ammonium by coal by–products:Slag,honeycomb–cinder and coal gangue[J]. International Journal of Environmental Science and Technology,2013,10(6):1309−1318.
[21] 金会心,吴复忠,朱明燕,等. 贵州六盘水煤矸石的矿物特性[J]. 过程工程学报,2014,14(1):151−156
JIN Huixin,WU Fuzhong,ZHU Mingyan,et al. Mineral characteristics of coal gangue from Liupanshui in Guizhou Province[J]. The Chinese Journal of Process Engineering,2014,14(1):151−156
[22] 张男,潘爱芳. 长武地区煤矸石的成分特征及综合利用[J]. 矿床地质,2012,31(增刊1):967−968
ZHANG Nan,PAN Aifang. Composition characteristics and comprehensive utilization of coal gangue in Changwu area[J]. Mineral Deposits,2012,31(Sup.1):967−968
[23] 李建杰,郭爱民,丁全录,等. 自燃煤矸石轻集料混凝土的性能研究[J]. 新型建筑材料,2007(7):55−57
LI Jianjie,GUO Aimin,DING Quanlu,et al. Study on properties of lightweight aggregate concrete using self combustion gangue[J]. New Building Materials,2007(7):55−57
[24] 孙志华,刘开平,汪敏强,等. 铜川自燃煤矸石特征研究[J]. 煤炭学报,2013,38(增刊1):136−141
SUN Zhihua,LIU Kaiping,WANG Minqiang,et al. Properties of spontaneous combustion coal gangue from Tongchuan[J]. Journal of China Coal Society,2013,38(Sup.1):136−141
[25] 张健,李有光,钱觉时. 自燃煤矸石作水泥混合材的试验研究[J]. 粉煤灰综合利用,2010,4(1):26−28
ZHANG Jian,LI Youguang,QIAN Jueshi. Experimental study on spontaneous combustion coal gangue as cement admixture[J]. Fly Ash Comprehensive Utilization,2010,4(1):26−28
[26] 段晓牧,夏军武,杨建平. 煤矸石细集料对水泥浆体微观结构的影响及其作用机理[J]. 建筑材料学报,2014,17(4):700−705
DUAN Xiaomu,XIA Junwu,YANG Jianping. Influence of coal gangue fine aggregate on microstructure of cement mortar and its action mechanism[J]. Journal of Building Materials,2014,17(4):700−705
[27] 王坚,邢莉燕,姬慧,等. 自燃煤矸石胶结料混凝土的研究[J]. 煤炭科学技术,2007,35(3):77−79
WANG Jian,XING Liyan,JI Hui,et al. Research on concrete blinded with spontaneous combusted coal refuse[J]. Coal Science and Technology,2007,35(3):77−79
[28] 宋天奇. 煤矸石充填材料地球化学特征及重金属元素迁移行为研究[D]. 徐州:中国矿业大学,2019.
SONG Tianqi. Study on geochemical characteristics and heavy metal element migration of coal gangue backfilling material[D]. Xuzhou:China University of Mining and Technology,2019.
[29] 刘文昌,潘永泰,赵英霄,等. 阳泉地区煤矸石堆存现状及治理建议[J]. 煤炭加工与综合利用,2018(11):67−70
LIU Wenchang,PAN Yongtai,ZHAO Yingxiao,et al. The present situation and the treatment suggestions of coal gangue storage in Yangquan area[J]. Coal Processing & Comprehensive Utilization,2018(11):67−70
[30] 中国煤炭工业协会. 2020煤炭行业发展年度报告[R/OL]. (2021-03-30) [10/25/2022-06-25]. http://www.coalchina.org.cn/uploadfile/2021/0303/20210303022435291.
[31] 潘树仁,潘海洋,朱开成,等. 煤矿开采若干生态环境地质问题及解决思路[J]. 中国煤炭地质,2020,32(9):21−25
PAN Shuren,PAN Haiyang,ZHU Kaicheng,et al. Some environment geological issues and solution thinking during coal mining[J]. Coal Geology of China,2020,32(9):21−25
[32] 张吉雄,巨峰,李猛,等. 煤矿矸石井下分选协同原位充填开采方法[J]. 煤炭学报,2020,45(1):131−140
ZHANG Jixiong,JU Feng,LI Meng,et al. Method of coal gangue separation and coordinated in−situ backfill mining[J]. Journal of China Coal Society,2020,45(1):131−140
[33] 张国胜,杨晓炳,郭斌,等. 全尾砂充填采矿低成本新型充填胶凝材料研究与发展方向[J]. 金属矿山,2020,4(7):1−9
ZHANG Guosheng,YANG Xiaobing,GUO Bin,et al. Study and development direction of a new low cost filling cementitious materials for mining with unclassified tailings filling method[J]. Metal Mine,2020,4(7):1−9
[34] 刘春荣,宋宏伟,董斌. 煤矸石用于路基填筑的探讨[J]. 中国矿业大学学报,2001,30(3):294−297
LIU Chunrong,SONG Hongwei,DONG Bin. Study on utilization of waste as roadbed materials[J]. Journal of China University of Mining & Technology,2001,30(3):294−297
[35] 卞正富. 我国煤矿区土地复垦与生态重建研究[J]. 资源·产业,2005,7(2):18−24
BIAN Zhengfu. Research on the recultivation and ecological reconstruction in coal mining area in China[J]. Resources & Industries,2005,7(2):18−24
[36] 邓颖兰,魏恺颉,赵迪斐,等. 我国煤矸石固体废弃物在建筑与环境修复领域的资源化利用[J]. 能源研究与利用,2021(5):33−36
DENG Yinglan,WEI Kaijie,ZHAO Difei,et al. Utilization of coal gangue solid waste in construction and environmental restoration in China[J]. Energy Research & Utilization,2021(5):33−36
[37] 郭彦霞,张圆圆,程芳琴. 煤矸石综合利用的产业化及其展望[J]. 化工学报,2014,65(7):2443−2453
GUO Yanxia,ZHANG Yuanyuan,CHENG Fangqin. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal,2014,65(7):2443−2453
[38] 杨方亮. 煤炭资源综合利用发电现状分析与前景探讨[J]. 中国煤炭,2020,46(10):67−74
YANG Fangliang. Current situation analysis and prospect discussion on comprehensive utilization of coal resources for power generation[J]. China Coal,2020,46(10):67−74
[39] 陈仕香. 用煤矸石替代粘土配料生产优质水泥熟料[J]. 水泥,2003(4):18−19
CHEN Shixiang. Substitution of coal gangue for clay batching to produce high quality cement clinkers[J]. Cement,2003(4):18−19
[40] LI Dongxu,SONG Xuyan,GONG Chenchen,et al. Research on cementitious behavior and mechanism of pozzolanic cement with coal gangue[J]. Cement and Concrete Research,2006,36(9):1752−1759.
[41] FRÍAS M,ROJAS M I S,GARCÍA R,et al. Effect of activated coal mining wastes on the properties of blended cement[J]. Cement and Concrete Composites,2012,34(5):678−683.
[42] LIU Xiaoming,ZHANG Na,YAO Yuan,et al. Micro−structural characterization of the hydration products of bauxite−calcination−method red mud−coal gangue based cementitious materials[J]. Journal of Hazardous Materials,2013,262:428−438.
[43] 冯荣,王琨,孟凡然,等. 发泡陶瓷空心砖填充煤矸石陶粒制备透水砖的研究[J]. 砖瓦,2021(1):15−17
FENG Rong,WANG Kun,MENG Fanran,et al. Study on preparation of permeable bricks made of foamed ceramic hollow bricks filled with coal gangue ceramsite[J]. Brick–Tile,2021(1):15−17
[44] 董建勋,苏孝杰. 平顶山地区煤矸石资源化利用途径探索[J]. 煤炭加工与综合利用,2021(8):80−84
DONG Jianxun,SU Xiaojie. Exploration on theeays of resource utilization of coal gangue in Pingdingshan area[J]. Coal Processing & Comprehensive Utilization,2021(8):80−84
[45] 王辰,梁惠祺,别泉泉,等. 煤矸石制备机制砂的研究进展[J]. 中国煤炭,2021,47(7):68−76
WANG Chen,LIANG Huiqi,BIE Quanquan,et al. Research progress of manufactured sand from coal gangue[J]. China Coal,2021,47(7):68−76
[46] 张泽琳,葛小冬. 煤矸石中硫铁矿分选方法研究进展[J]. 化工矿物与加工,2016,45(6):76−81
ZHANG Zelin,GE Xiaodong. Progress on separation method of pyrite from coal gangue[J]. Industrial Minerals & Processing,2016,45(6):76−81
[47] 王伟,孙华峰,李海军. 分选硫铁矿用高密度重介悬浮液特性的分析研究[J]. 选煤技术,2018(6):42−45
WANG Wei,SUN Huafeng,LI Haijun. Analytical study on characteristics of high–density heavy medium suspension for separation of pyrite[J]. Coal Preparation Technology,2018(6):42−45
[48] 刘学功,韩文静. 煤炭固体废弃物煤矸石在复合材料制备中的应用[J]. 材料研究与应用,2015,9(3):154−157
LIU Xuegong,HAN Wenjing. Application of coal solid waste–coal gangue in the preparation of composites[J]. Materials Research and Application,2015,9(3):154−157
[49] 刘成龙,许爱华,夏举佩,等. 煤矸石浸渣制备白炭黑工艺优化及性能分析[J]. 精细化工,2019,36(11):2177−2184
LIU Chenglong,XU Aihua,XIA Jupei,et al. Process optimization and performance analysis for preparation of silica from coal gangue leaching residue[J]. Fine Chemicals,2019,36(11):2177−2184
[50] 朱明燕,金会心,聂登攀,等. 煤矸石氟盐烧结法铝硅分离及制备白炭黑的实验研究[J]. 应用化工,2019,48(10):2407−2411
ZHU Mingyan,JIN Huixin,NIE Dengpan,et al. The study of sintering coal gangue villiaumite to separate alumina,silicon and preparation of silica[J]. Applied Chemical Industry,2019,48(10):2407−2411
[51] 孔德顺,吴红,连明磊. 高铁含量煤矸石制备4A分子筛的研究[J]. 硅酸盐通报,2019,38(9):2999−3003
KONG Deshun,WU Hong,LIAN Minglei. Study on the preparation of 4A zeolite from coal gangue with high iron content[J]. Bulletin of the Chinese Ceramic Society,2019,38(9):2999−3003
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons