Coal Geology & Exploration
Abstract
Energy geostructure refers to a type of structure equipped with heat exchange pipe in the building foundation element and the underground structure, which has the functions of load bearing and heat exchange. It not only effectively saves the valuable and irreversible underground space resources, but also makes full use of the non-carbon based continuous, stable, safe and clean geothermal energy resources, thus having more advantages than the traditional Ground Source Heat Pump (GSHP). Herein, the concept, advantages, research and application progress of energy geostructure at home and abroad were systematically summarized. Moreover, the current situation of four common energy geostructures, namely energy tunnel, energy pile (energy anchor), energy diaphragm wall and energy utility tunnel, were emphatically described. The combined construction of GSHP system and mining areas, such as the coal mine roadway, could not only make comprehensive use of geothermal energy resources, but also effectively solve the problems of high temperature hazard in traditional deep mining excavation, as well as heat preservation & anti-freezing of coal mine roadway in cold areas. Thus, it has the obvious advantages of environmental protection, low carbon, energy saving and high efficiency, and thereby becomes an effective way to achieve the green mine construction and the goals of “carbon peaking and carbon neutrality”, capable of producing significant economic, environmental and social benefits. However, the current research models of energy geostructures have their own applicability and limitation, with the main problems of large deviation between the research results and the actual working conditions, and few researches conducted on energy diaphragm wall and energy utility tunnel. In terms of research on energy geostructures, reference should be made to the actual engineering situations, and the influence of all factors on structural engineering should be considered as far as possible, so as to improve the accuracy and level of the research results. In addition, the feasibility and prospect of using energy geostructures in construction of coal mine roadway were discussed. On the basis of energy geostructures, it is also a good idea to try to build a composite energy utilization system by further integrating the non-carbon based clean energies, including the solar and wind energies. Meanwhile, the suggestions were given for the design of hazard prevention and mitigation of energy geostructures in view of earthquake resistance (reduction), explosion resistance and fire protection, which could provide reference for the research, application and development of energy geostructure and its application in green mine construction.
Keywords
energy geostructure, geothermal energy, Ground Source Heat Pump (GSHP), green mine, energy conservation and disaster mitigation, carbon peaking and carbon neutrality goal, progress
DOI
10.12363/issn.1001-1986.22.02.0074
Recommended Citation
WEN Jiwei, HOU Junlong, LIU Xinghong,
et al.
(2022)
"Research and application progress of energy underground structures,"
Coal Geology & Exploration: Vol. 50:
Iss.
10, Article 13.
DOI: 10.12363/issn.1001-1986.22.02.0074
Available at:
https://cge.researchcommons.org/journal/vol50/iss10/13
Reference
[1] 邬杰,余跃进. 能源地下工程在南京地区的适宜性讨论[J]. 建筑节能,2014,42(2):34−37
WU Jie,YU Yuejin. Applicability of underground energy engineering in Nanjing area[J]. Building Energy Efficiency,2014,42(2):34−37
[2] 陈小龙,曹诗定. 能源地下工程在上海地区的适用性研究[J]. 土木工程学报,2009,42(10):122−126
CHEN Xiaolong,CAO Shiding. Applicability of energy saving geo–technology in Shanghai[J]. China Civil Engineering Journal,2009,42(10):122−126
[3] 夏才初,曹诗定,王伟. 能源地下工程的概念、应用与前景展望[J]. 地下空间与工程学报,2009,5(3):419−424
XIA Caichu,CAO Shiding,WANG Wei. An introduction to energy geotechnical engineering[J]. Chinese Journal of Underground Space and Engineering,2009,5(3):419−424
[4] 杨梅芳,王庆华,黄坚. 浅层地热能与地下结构协同发展的研究与应用现状[J]. 建筑结构,2020,50(增刊2):819−823
YANG Meifang,WANG Qinghua,HUANG Jian. Research and application status of coordinated development of shallow geothermal energy and underground structure[J]. Building Structure,2020,50(Sup.2):819−823
[5] 方静涛. 哈尔滨地区岩土热物性分析及相关性研究[D]. 长春:吉林大学,2013.
FANG Jingtao. The analysis and correlation study of rock and soil thermal physical properties in the Harbin area[D]. Changchun:Jilin University,2013.
[6] 王庆华. 浅层岩土体热物理性质原位测试仪的研制及传热数值模拟[D]. 长春:吉林大学,2009.
WANG Qinghua. Simulation of heat transfer and development of in–situ testing equipment of rock and soil thermophysical properties[D]. Changchun:Jilin University,2009.
[7] 刘松玉,郭易木,张国柱,等. 热传导CPT探头的研发与应用[J]. 岩土工程学报,2020,42(2):354−361
LIU Songyu,GUO Yimu,ZHANG Guozhu,et al. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering,2020,42(2):354−361
[8] 刘春雷,王贵玲,王婉丽,等. 基于现场热响应测试方法的地下岩土热物性分析[J]. 吉林大学学报(地球科学版),2014,44(5):1602−1608
LIU Chunlei,WANG Guiling,WANG Wanli,et al. Analysis of soil thermal properties with in−situ thermal response test method[J]. Journal of Jilin University (Earth Science Edition),2014,44(5):1602−1608
[9] ALRTIMI A A,ROUAINIA M,MANNING D A C. Thermal enhancement of PFA−based grout for geothermal heat exchangers[J]. Applied Thermal Engineering,2013,54(2):559−564.
[10] LEE C,LEE K,CHOI H,et al. Characteristics of thermally–enhanced bentonite grouts for geothermal heat exchanger in South Korea[J]. Science in China Series E: Technological Sciences,2010,53(1):123−128.
[11] 高智芳. 纳米填料和高导热高分子复合材料的制备及其性能研究[D]. 天津:天津大学,2012.
GAO Zhifang. Preparation and properties of nano−fillers and polymer composites with high thermal conductivity[D]. Tianjin:Tianjin University,2012.
[12] 张浩,徐拴海,杨雨,等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探,2020,48(2):195−201
ZHANG Hao,XU Shuanhai,YANG Yu,et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coal Geology & Exploration,2020,48(2):195−201
[13] 卜宪标,蒋坤卿,李华山,等. 基于高导热材料填充漏失构造的深井换热器性能分析[J]. 地质学报,2020,94(7):2139−2146
BU Xianbiao,JIANG Kunqing,LI Huashan,et al. Performance analysis of deep borehole heat exchanger through filling leakage formation using high thermal conductivity material[J]. Acta Geologica Sinica,2020,94(7):2139−2146
[14] 王冲. 地源热泵回填材料优化集成及导热特性研究[D]. 绵阳:西南科技大学,2014.
WANG Chong. Optimal integration of backfill material of ground–source heat pump and research on thermal characteristics[D]. Mianyang:Southwest University of Science and Technology,2014.
[15] 杨雨,徐拴海,张浩,等. 地热井高导热低密度固井材料制备、性能及结构[J]. 钻井液与完井液,2021,38(1):93−101
YANG Yu,XU Shuanhai,ZHANG Hao,et al. Preparation,properties and structure of high heat conduction and low density cementing materials for geothermal wells[J]. Drilling Fluid & Completion Fluid,2021,38(1):93−101
[16] BRANDL H. Energy foundations and other thermo−active ground structures[J]. Géotechnique,2006,56(2):81−122.
[17] GAO Jun,ZHANG Xu,LIU Jun,et al. Numerical and experimental assessment of thermal performance of vertical energy piles:An application[J]. Applied Energy,2008,85(10):901−910.
[18] 钱七虎. 利用地下空间助力发展绿色建筑与绿色城市[J]. 隧道建设(中英文),2019,39(11):1737−1747
QIAN Qihu. Underground space utilization helps develop green buildings and green cities[J]. Tunnel Construction,2019,39(11):1737−1747
[19] BARLA M,DONNA A D. Energy tunnels:Concept and design aspects[J]. Underground Space,2018,3(4):268−276.
[20] 夏才初,张国柱,孙猛. 能源地下结构的理论及应用:地下结构内埋管的地源热泵系统[M]. 上海:同济大学出版社,2015.
[21] ADAM D,MARKIEWICZ R. Energy from earth–coupled structures,foundations,tunnels and sewers[J]. Geótechnique,2009,59(3):229−236.
[22] WINTERLING R,NICHOLSON D P,WINTER A,et al. The design of thermal tunnel energy segments for Crossrail,UK[J]. Proceedings of the Institution of Civil Engineers:Engineering Sustainability,2014,167(3):118−134.
[23] BARLA M,DONNA A D,PERINO A. Application of energy tunnels to an urban environment[J]. Geothermics,2016,61:104−113.
[24] 郭红仙,孟嘉伟,祝振南. 能源隧道热响应试验数值分析与适用性评价[J]. 防灾减灾工程学报,2019,39(4):572−578
GUO Hongxian,MENG Jiawei,ZHU Zhennan. Numerical analysis and applicability evaluation of thermal response test in energy tunnels[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):572−578
[25] 马康,程晓辉. 能源隧道的温度应力有限元计算[J]. 防灾减灾工程学报,2017,37(4):571−576
MA Kang,CHENG Xiaohui. Finite element calculation of thermal stress of energy tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(4):571−576
[26] 熊泽琛,王天麟,郭红仙,等. 基于浅层地热能的寒区隧道排水沟保温防冻可行性研究[J]. 防灾减灾工程学报,2019,39(4):556−563
XIONG Zechen,WANG Tianlin,GUO Hongxian,et al. Feasibility study on insulation and antifreeze of drainage ditch in cold area tunnel based on shallow geothermal energy[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):556−563
[27] 张国柱,夏才初,马绪光,等. 寒区隧道地源热泵型供热系统岩土热响应试验[J]. 岩石力学与工程学报,2012,31(1):99−105
ZHANG Guozhu,XIA Caichu,MA Xuguang,et al. Rock–soil thermal response test of tunnel heating system using heat pump in cold region[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(1):99−105
[28] 陈明全. 寒区隧道地源热泵型防冻保暖系统研究[D]. 重庆:重庆交通大学,2016.
CHEN Mingquan. Research on the ground source heat pump tunnel anti freezing system[D]. Chongqing:Chongqing Jiaotong University,2016.
[29] 祝振南,郭红仙. 地热利用型盾构法隧道施工探索:以清华园隧道能源管片设计、制作及安装为例[J]. 隧道建设(中英文),2019,39(4):677−683
ZHU Zhennan,GUO Hongxian. Exploration on construction of geothermal−utilized shield tunnels:A case study of fabrication and installation of tunnel energy segments in Qinghuayuan tunnel[J]. Tunnel Construction,2019,39(4):677−683
[30] 张玉强,杨勇,夏才初,等. 寒区隧道地源热泵型供热系统运行能效分析[J]. 现代隧道技术,2015,52(6):177−183
ZHANG Yuqiang,YANG Yong,XIA Caichu,et al. The operating energy efficiency of a tunnel heating system using a ground–source heat pump in a cold region[J]. Modern Tunnelling Technology,2015,52(6):177−183
[31] 赵淑红. 废弃矿井巷道季节性蓄热特性研究[D]. 徐州:中国矿业大学,2014.
ZHAO Shuhong. Study on the seasonal heat storage of the abandoned mine roadway[D]. Xuzhou:China University of Mining and Technology,2014.
[32] 张永亮,刘耀香,陈喜山. 胶东半岛矿山地热资源利用方法[J]. 金属矿山,2014(5):158−161
ZHANG Yongliang,LIU Yaoxiang,CHEN Xishan. Utilization methods of geothermal resources in Jiaodong peninsula mines[J]. Metal Mine,2014(5):158−161
[33] 蔡美峰,多吉,陈湘生,等. 深部矿产和地热资源共采战略研究[J]. 中国工程科学,2021,23(6):43−51
CAI Meifeng,DUO Ji,CHEN Xiangsheng,et al. Development strategy for co–mining of the deep mineral and geothermal resources[J]. Strategic Study of CAE,2021,23(6):43−51
[34] 亢方超,唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘,2020,27(1):185−193
KANG Fangchao,TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China[J]. Earth Science Frontiers,2020,27(1):185−193
[35] 段崇豪. 地埋管地源热泵系统在废弃矿山应用中的换热性能研究[D]. 济南:山东大学,2020.
DUAN Chonghao. Research on heat transfer performance of underground tube ground source heat pump system in abandoned mine[D]. Jinan:Shandong University,2020.
[36] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版),2015,55(1):14−20
GUO Hongxian,LI Xiangyu,CHENG Xiaohui. Simulation and applicability of thermal response tests in energy piles[J]. Journal of Tsinghua University (Science and Technology),2015,55(1):14−20
[37] 张文克. 桩埋管地热换热器的传热模型研究[D]. 济南:山东建筑大学,2009.
ZHANG Wenke. The heat transfer models for the ground heat exchanger inside foundation piles[D]. Jinan:Shandong Jianzhu University,2009.
[38] 刘汉龙,王成龙,孔纲强,等. U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J]. 岩土力学,2016,37(增刊1):441−447
LIU Hanlong,WANG Chenglong,KONG Gangqiang,et al. Comparative model test on thermomechanical characteristics of energy pile with U–shape,W–shape and spiral–shape[J]. Rock and Soil Mechanics,2016,37(Sup.1):441−447
[39] 赵海丰. 能源桩换热性能及结构热–力学特性研究[D]. 武汉:中国地质大学(武汉),2016.
ZHAO Haifeng. Study of thermal performance and thermal−mechanical characteristics of energy piles[D]. Wuhan:China University of Geosciences (Wuhan),2016.
[40] RAOUF A M I,RAOUF M,ABUEL–NAGA H,et al. Energy piles:Current state of knowledge and design challenges[J]. Journal of Environmental Geotechnics,2014,2(4):195−210.
[41] 李新. 能量桩的传热研究与工程应用[D]. 济南:山东建筑大学,2011.
LI Xin. The heat transfer study and engineering application of energy piles[D]. Jinan:Shandong Jianzhu University,2011.
[42] 桂树强,程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报,2014,36(6):1087−1094
GUI Shuqiang,CHENG Xiaohui. In–situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering,2014,36(6):1087−1094
[43] 张琦,王琰,赵海丰,等. 能源桩桩身横向变形试验研究[J]. 人民长江,2020,51(5):191−196
ZHANG Qi,WANG Yan,ZHAO Haifeng,et al. Experimental study on lateral deformation characteristics of energy piles[J]. Yangtze River,2020,51(5):191−196
[44] 程晓辉,赵乃峰,王浩,等. 清华热力学岩土模型与能源地下结构有限元模拟[J]. 清华大学学报(自然科学版),2020,60(9):707−714
CHENG Xiaohui,ZHAO Naifeng,WANG Hao,et al. Tsinghua thermodynamic soil model for simulating energy engineering projects[J]. Journal of Tsinghua University (Science and Technology),2020,60(9):707−714
[45] MOHAMAD Z,FARDOUN F,MEFTAH F. A review on energy piles design,evaluation,and optimization[J]. Journal of Cleaner Production,2021,292:1−25.
[46] 韩建飞. 能源锚杆热泵埋管换热器换热性能研究[D]. 北京:中国地质大学(北京),2014.
HAN Jianfei. Study on heat exchange of energy anchors heat pump system[D]. Beijing:China University of Geosciences (Beijing),2014.
[47] 李志毅,韩建飞,柳建国,等. 能源锚杆地源热泵冬季工况传热模拟与分析[J]. 工业建筑,2014,44(增刊1):599−603
LI Zhiyi,HAN Jianfei,LIU Jianguo,et al. Stimulation of the winter operating conditions for energy anchors heat pump system[J]. Industrial Construction,2014,44(Sup.1):599−603
[48] AMIS T,LOVERIDGE F. Energy piles and other thermal foundations for GSHP:Developments in UK practice and research[J]. REHVA Journal,2014(1):32−35.
[49] 刘汉龙,孔纲强,吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报,2014,36(1):176−181
LIU Hanlong,KONG Gangqiang,WU Hongwei. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering,2014,36(1):176−181
[50] 程洪涛. 低能耗建筑技术在南京朗诗·国际街区的应用[J]. 建筑科学,2006,22(6):84−86
CHENG Hongtao. Application of low energy consumption architecture technology in Nanjing Landsea international block[J]. Building Science,2006,22(6):84−86
[51] 吴晓澍,茅靳丰. 能源桩技术的研究与工程应用进展综述[J]. 暖通空调,2020,50(12):1−7
WU Xiaoshu,MAO Jinfeng. Review on research and engineering application of energy pile technology[J]. Journal of Heating Ventilating & Air Conditioning,2020,50(12):1−7
[52] 夏才初,朱建龙,曹诗定. 地下连续墙内热交换管引起的温度应力研究[J]. 地下空间与工程学报,2014,10(1):90−95
XIA Caichu,ZHU Jianlong,CAO Shiding. Research on thermal stress induced by the heat exchanger pipes buried in the diaphragm wall[J]. Chinese Journal of Underground Space and Engineering,2014,10(1):90−95
[53] 夏才初,孙猛,张国柱,等. 地下连续墙内埋管地热换热器传热模型[J]. 同济大学学报(自然科学版),2012,40(3):440−445
XIA Caichu,SUN Meng,ZHANG Guozhu,et al. Heat transfer model of geothermal heat exchangers embedded in diaphragm walls[J]. Journal of Tongji University (Natural Science),2012,40(3):440−445
[54] 孙猛,夏才初,张国柱,等. 地下连续墙内埋管换热器传热性能的试验研究[J]. 中国矿业大学学报,2012,41(2):225−230
SUN Meng,XIA Caichu,ZHANG Guozhu,et al. Experimental study of geothermal heat exchangers embedded in a diaphragm wall[J]. Journal of China University of Mining & Technology,2012,41(2):225−230
[55] 董盛时. 地热能提取对能源地下连续墙结构及地质环境影响研究[D]. 南京:南京大学,2019.
DONG Shengshi. Research on the effect of geothermal energy extraction on thermo–active diaphragm wall structures and geological environment[D]. Nanjing:Nanjing University,2019.
[56] BOURNE–WEBB P J,FREITAS T M B,GONCALVES R A D C. Thermal and mechanical aspects of the response of embedded retaining walls used as shallow geothermal heat exchangers[J]. Energy and Buildings,2016,125:130−141.
[57] SOGA K,YI Rui. Behaviour of a thermal wall installed in the Tottenham Court Road station box[C]//Federation of Piling Specialists’ Crossrail Lessons Learnt Conference. London:Federation of Piling Specialists’ Crossrail Lessons Learnt Conference,2015.
[58] 隋旺华,杭远. 煤矿水闸墙设计施工技术综述与展望[J]. 煤炭科学技术,2016,44(8):7−13
SUI Wanghua,HANG Yuan. Review and prospect on design and construction technology of mine water bulkhead[J]. Coal Science and Technology,2016,44(8):7−13
[59] 李思茹,袁艳平,曹晓玲,等. 综合管廊地埋管换热系统传热特性的数值模拟[J]. 太阳能学报,2021,42(5):24−31
LI Siru,YUAN Yanping,CAO Xiaoling,et al. Numerical simulation on heat transfer characteristics of ground−source heat pump system in utility tunnel[J]. Acta Energiae Solaris Sinica,2021,42(5):24−31
[60] 李思茹,袁艳平,曹晓玲,等. 综合管廊地埋管换热器的全年运行特性分析[J]. 制冷与空调,2020,34(1):39−48
LI Siru,YUAN Yanping,CAO Xiaoling,et al. Annual operation characteristic analysis of buried pipe heat exchanger in utility tunnel[J]. Refrigeration and Air Conditioning,2020,34(1):39−48
[61] 李思茹. 综合管廊地埋管换热系统传热特性研究[D]. 成都:西南交通大学,2019.
LI Siru. Study on heat transfer characteristics of ground–source heat pump system in utility tunnel[D]. Chengdu:Southwest Jiaotong University,2019.
[62] 李天斌. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报,2008,16(6):742−750
LI Tianbin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(6):742−750
[63] 闻毓民,信春雷,申玉生,等. 隧道衬砌结构减震层效能评定方法的振动台试验研究[J]. 振动与冲击,10/25/2022,41(5):197−207
WEN Yumin,XIN Chunlei,SHEN Yusheng,et al. Shaking table tests for effectiveness evaluation method of damping layer of tunnel lining structure[J]. Journal of Vibration and Shock,10/25/2022,41(5):197−207
[64] 岳庆霞,李杰. 地下综合管廊地震响应研究[J]. 同济大学学报(自然科学版),2009,37(3):285−290
YUE Qingxia,LI Jie. Research on utility tunnel seismic response[J]. Journal of Tongji University (Natural Science),2009,37(3):285−290
[65] 孙加超,邓勇军,姚勇,等. 综合管廊燃气仓内爆炸下冲击波衰减规律研究[J]. 爆破,2018,35(3):35−41
SUN Jiachao,DENG Yongjun,YAO Yong,et al. Attenuation law of explosive shock wave in utility tunnel gas chamber[J]. Blasting,2018,35(3):35−41
[66] 刘中宪,王治坤,张欢欢,等. 燃气爆炸作用下地下综合管廊动力响应模拟[J]. 防灾减灾工程学报,2018,38(4):624−632
LIU Zhongxian,WANG Zhikun,ZHANG Huanhuan,et al. Numerical simulation of blast–resistant performance of utility tunnel under gas explosion[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(4):624−632
[67] 张小勇,龚顺风. 隧道内爆炸作用下衬砌结构损伤机理及抗爆性能研究[J]. 振动与冲击,2013,32(22):193−199
ZHANG Xiaoyong,GONG Shunfeng. Damage mechanism and anti–explosion behavior of tunnel lining structures under internal blast loading[J]. Journal of Vibration and Shock,2013,32(22):193−199
[68] 高明旭. 某综合管廊电缆舱火灾安全性研究[D]. 北京:北方工业大学,2018.
GAO Mingxu. Study on fire safety of cable compartment in a utility tunnel[D]. Beijing:North China University of Technology,2018.
[69] 杨高尚,彭立敏,彭建国,等. 从人员疏散的角度研究公路隧道的横通道间距[J]. 灾害学,2007,22(1):44−49
YANG Gaoshang,PENG Limin,PENG Jianguo,et al. Optimization of the passageway interval in tunnels from a point of view of people evacuation[J]. Journal of Catastrophology,2007,22(1):44−49
[70] 熊珍珍. 隧道火灾衬砌结构热力受损规律研究[D]. 北京:中国矿业大学(北京),2014.
XIONG Zhenzhen. Study on the thermal damage law of tunnel lining structure on fire disaster[D]. Beijing:China University of Mining and Technology (Beijing),2014.
[71] 《中国公路学报》编辑部. 中国隧道工程学术研究综述·2015[J]. 中国公路学报,2015,28(5):1−65
Editorial Department of China Journal of Highway and Transport. Review on China’s tunnel engineering research:2015[J]. China Journal of Highway and Transport,2015,28(5):1−65
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons