Coal Geology & Exploration
Abstract
In the Loess Plateau of China, the interface between the Loess and Hipparion Red Clay is widely distributed. The initial adhesion between this interfaces plays an important role in its shear strength. To investigate the effect of initial adhesion on shear strength and deformation characteristics of the interfaces, we firstly performed a series of direct shear experiments. Then, we discussed the effects of initial adhesion on failure mode, shear deformation and shear strength of interfaces. The results indicate that the failure modes of interfaces with initial adhesion and interfaces without initial adhesion are different. The initial adhesion improves the sliding resistance of specimen along the interface during shearing, and the failure mode of specimen tends to shear-off with higher damage. The shear stress- displacement curves of interfaces show strain softening shape, indicating the brittle failure of specimens. For interface specimens with initial adhesion, the displacement corresponding to peak strength and the dropping of shear stress after peak strength are greater than that of specimen without initial adhesion. The vertical dilatancy behavior of interfaces during shearing is obvious, however, the initial adhesion reduces the vertical dilatancy displacement of specimens. The variation range of dilatancy displacement of interface with initial adhesion is less than that of specimens without initial adhesion. The initial adhesion significantly improves the shear strength of interfaces. When the interface roughness is lower, the initial adhesion improve the shear strength of interfaces greatly. When the interface roughness is higher, the increment of shear strength of interfaces induced by initial adhesion decreases. This is because the shear strength of interfaces is mainly dominated by the shear strength of heterogeneous soils on both sides of interfaces.
Keywords
interface between loess and Hipparion red clay, initial adhesion, deformation characteristic, shear strength, failure mode, northwest area of China
DOI
10.12363/issn.1001-1986.22.02.0103
Recommended Citation
ZHU Yanbo, YANG Fanfan, MIAO Shuaisheng,
et al.
(2022)
"Effect of initial adhesion on shear strength and deformation characteristics of interfaces in heterogeneous soils,"
Coal Geology & Exploration: Vol. 50:
Iss.
10, Article 11.
DOI: 10.12363/issn.1001-1986.22.02.0103
Available at:
https://cge.researchcommons.org/journal/vol50/iss10/11
Reference
[1] 杨烜宇,王闫超,李景皓,等. 基于能量守恒确定岩体结构面的抗剪强度[J]. 岩石力学与工程学报,2020,39(增刊1):2674−2682
YANG Xuanyu,WANG Yanchao,LI Jinghao,et al. A method to determine the shear strength of structural plane based on energy conservation[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup.1):2674−2682
[2] 陈俊桦,张家生,李键. 接触面粗糙度对红黏土–混凝土接触面力学性质的影响[J]. 中南大学学报(自然科学版),2016,47(5):1682−1688
CHEN Junhua,ZHANG Jiasheng,LI Jian. Influence of interface roughness on mechanical properties of red clay−concrete interface[J]. Journal of Central South University (Science and Technology),2016,47(5):1682−1688
[3] WU Qiong,XU Yanjun,TANG Huiming,et al. Investigation on the shear properties of discontinuities at the interface between different rock types in the Badong Formation,China[J]. Engineering Geology,2018,245:280−291.
[4] 曲永新,张永双,覃祖淼. 三趾马红土与西北黄土高原滑坡[J]. 工程地质学报,1999,7(3):257−265
QU Yongxin,ZHANG Yongshuang,QIN Zumiao. Hipparion laterite and landslide hazards on loess plateau of northwestern China[J]. Journal of Engineering Geology,1999,7(3):257−265
[5] 马驰. 堆积层–基岩接触面滑坡特征及形成机理研究[D]. 西安:长安大学,2016.
MA Chi. Study on features and cause mechanism of debris–bedrock interface landslide[D]. Xi’an:Chang’an University,2016.
[6] 辛鹏,吴树仁,石菊松,等. 基于降雨响应的黄土–基岩型滑坡失稳机制分析:以宝鸡市麟游县岭南滑坡为例[J]. 工程地质学报,2012,20(4):547−555
XIN Peng,WU Shuren,SHI Jusong,et al. Failure mechanism analysis of loess–rock landslide under rainfall–a case study:Take the Lingnan landslide in Linyou County of Baoji City for example[J]. Journal of Engineering Geology,2012,20(4):547−555
[7] 石菊松,李滨,吴树仁,等. 宝鸡渭河北岸黄土塬边大型滑坡成因机制研究[J]. 工程地质学报,2013,21(6):938−949
SHI Jusong,LI Bin,WU Shuren,et al. Mechanism of large–scale slide at edge of loess plateau on north of Weihe River in Baoji urban area,Shaanxi Province[J]. Journal of Engineering Geology,2013,21(6):938−949
[8] 苗帅升. 黄土–三趾马红土接触界面剪切力学特性试验研究[D]. 西安:长安大学,2020.
MIAO Shuaisheng. Experimental study on the shear mechanical properties of interface of loess and Hipparion red clay[D]. Xi’an:Chang’an University,2020.
[9] 祝艳波,韩宇涛,兰恒星,等. 接触角度对黄土–三趾马红土界面剪切力学特性影响研究[J]. 工程地质学报,2021,29(3):879−890
ZHU Yanbo,HAN Yutao,LAN Hengxing,et al. Experimental study on influence of contact angle on shear strength of interfaces between loess and Hipparion red clay[J]. Journal of Engineering Geology,2021,29(3):879−890
[10] 文宝萍,王思敬,王恩志,等. 黄土–红层接触面滑坡的变形特征[J]. 地质学报,2005(1):144
WEN Baoping,WANG Sijing,WANG Enzhi,et al. Deformation characteristics of landslide at loess red bed contact surface[J]. Acta Geologica Sinica,2005(1):144
[11] 吴玮江,宿星,刘伟,等. 黄土–泥岩接触面滑坡的特征与成因[J]. 冰川冻土,2014,36(5):1167−1175
WU Weijiang,SU Xing,LIU Wei,et al. Loess–mudstone interface landslides:Characteristics and causes[J]. Journal of Glaciology and Geocryology,2014,36(5):1167−1175
[12] JOHNSTON I W,LAM T. Frictional characteristics of planar concrete–rock interfaces under constant normal stiffness conditions[C]//Proceedings of the 4th ANZ Conference on Geomechanics. Perth,Western Australia,1984:397−401.
[13] 董金玉,杨继红,伍法权,等. 三峡库区软硬互层近水平地层高切坡崩塌研究[J]. 岩土力学,2010,31(1):151−157
DONG Jinyu,YANG Jihong,WU Faquan,et al. Research on collapse of high cutting slope with horizontal soft–hard alternant strata in Three Gorges Reservoir area[J]. Rock and Soil Mechanics,2010,31(1):151−157
[14] 张新善,廖红建,邢心魁. 桩土相互作用的力学特性室内试验研究[J]. 工程勘察,2005(6):1−4
ZHANG Xinshan,LIAO Hongjian,XING Xinkui. Laboratory experimental study on mechanical properties of pile–soil interaction[J]. Geotechnical Investigation & Surveying,2005(6):1−4
[15] 乔来军,商翔宇,吕晓亮,等. 不同含水量条件下黄土及黄土–加筋带接触面力学性质对比试验研究[J]. 土工基础,2010,24(6):56−59
QIAO Laijun,SHANG Xiangyu,LYU Xiaoliang,et al. Comparative test study on the mechanical property of loess and loess–reinforced belt interface with different water content[J]. Soil Engineering and Foundation,2010,24(6):56−59
[16] 周蓉. 复杂条件下砂–黄土界面剪切力学特性试验研究[D]. 青岛:青岛理工大学,2017.
ZHOU Rong. Study on shear mechanical properties of sand–loess under complex condition[D]. Qingdao:Qingdao University of Technology,2017.
[17] 金子豪,杨奇,陈琛,等. 粗糙度对混凝土–砂土接触面力学特性的影响试验研究[J]. 岩石力学与工程学报,2018,37(3):754−765
JIN Zihao,YANG Qi,CHEN Chen,et al. Experimental study on effects of the roughness on mechanical behaviors of concrete–sand interface[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):754−765
[18] YANG Xuanyu,WANG Yanchao,SUN Zhijie. The shearing anisotropy characteristics on the interface of loess with bedrock[J]. Bulletin of Engineering Geology and the Environment,2020,79(5):5205−5212.
[19] BAHAADDINI M,HAGAN P C,MITRA R,et al. Experimental and numerical study of asperity degradation in the direct shear test[J]. Engineering Geology,2016,204:41−52.
[20] MORTARA G,FERRARA D,FOTIA G. Simple model for the cyclic behavior of smooth sand−steel interfaces[J]. Journal of Geotechnical & Geoenvironmental Engineering,2010,136(7):1004−1009.
[21] 金磊磊,魏玉峰. 基于三维形貌和剪胀效应的软–硬节理抗剪强度模型[J]. 工程力学,2020,37(12):180−190
JIN Leilei,WEI Yufeng. Calculation model for the shear strength of soft–hard joints based on three–dimensional morphology and dilatancy effect[J]. Engineering Mechanics,2020,37(12):180−190
[22] DEJONG J T,WESTGATE Z J. Role of initial state,material properties,and confinement condition on local and global soil−structure interface behavior[J]. Journal of Geotechnical & Geoenvironmental Engineering,2009,135(11):1646−1660.
[23] GHAZVINIAN A H,TAGHICHIAN A,HASHEMI M,et al. The shear behavior of bedding planes of weakness between two different rock types with high strength difference[J]. Rock Mechanics & Rock Engineering,2010,43(1):69−87.
[24] 王永洪,张明义,白晓宇,等. 不同含水率状态下黏性土–混凝土界面剪切特性室内试验研究[J]. 防灾减灾工程学报,2018,38(1):118−123
WANG Yonghong,ZHANG Mingyi,BAI Xiaoyu,et al. Laboratory experimental study on shear behavior of clayey soil−concrete interface under different moisture conditions[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(1):118−123
[25] 龚辉,赵春风,陶帼雄,等. 应力历史对黏土–混凝土界面剪切特性的影响研究[J]. 岩石力学与工程学报,2011,30(8):1712−1719
GONG Hui,ZHAO Chunfeng,TAO Guoxiong,et al. Research on effect of stress history on shear behavior of interface between clay and concrete[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1712−1719
[26] 陆勇,周国庆,夏红春,等. 中、高压下粗粒土–结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学,2013,34(12):3491−3499
LU Yong,ZHOU Guoqing,XIA Hongchun,et al. Effect of shape scale on characteristics of coarse grained soil–structural interface under medium and high pressures[J]. Rock and Soil Mechanics,2013,34(12):3491−3499
[27] 邬俊杰,刘帅君,陈锦剑,等. 桩土接触面三轴模拟试验设备研究与应用[J]. 上海交通大学学报,2014,48(11):1523−1527
WU Junjie,LIU Shuaijun,CHEN Jinjian,et al. Development and application of a triaxial model test system for pile−soil interface[J]. Journal of Shanghai Jiaotong University,2014,48(11):1523−1527
[28] 吕玺琳,张滨,章澎. 砂与黏土混合物强度特性环剪试验研究[J]. 工程地质学报,2019,27(5):1110−1115
LYU Xilin,ZHANG Bin,ZHANG Peng. Laboratory ring shear tests for shear strength of sand and clay mixtures[J]. Journal of Engineering Geology,2019,27(5):1110−1115
[29] 艾英钵,徐阳阳,邱维邦. 土石混合料与岩石接触面强度特性模拟试验研究[J]. 工程地质学报,2020,28(3):450−458
AI Yingbo,XU Yangyang,QIU Weibang. Experimental study of strength behavior of gravel and rock interface[J]. Journal of Engineering Geology,2020,28(3):450−458
[30] 祝艳波,韩宇涛,苗帅升,等. 黄土–三趾马红土滑坡滑带土剪切力学特性影响因素[J]. 地球科学与环境学报,2021,43(4):744−759
ZHU Yanbo,HAN Yutao,MIAO Shuaisheng,et al. Influencing factors on the shear strength of sliding zone of loess–Hipparion red clay landslide[J]. Journal of Earth Sciences and Environment,2021,43(4):744−759
[31] 张磊,刘慧,王铁行. 不同初始干密度黄土与混凝土接触面直剪试验[J]. 西安建筑科技大学学报(自然科学版),2020,52(3):384−389
ZHANG Lei,LIU Hui,WANG Tiehang. Direct shear test on interface between loess with different initial dry densities and concrete[J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition),2020,52(3):384−389
[32] WANG J P,LING H I,LESHCHINSKY D. Cyclic behavior of soil–structure interfaces associated with modular−block reinforced soil–retaining walls[J]. Geosynthetics International,2008,15(1):14−21.
[33] AMMAR A,NAJJAR S S,SADEK S. Mechanics of the interface interaction between hemp fibers and compacted clay[J]. International Journal of Geomechanics,2019,19(4):04019015.
[34] 张嘎,张建民. 粗粒土与结构接触面单调力学特性的试验研究[J]. 岩土工程学报,2004,26(1):21−25
ZHANG Ga,ZHANG Jianmin. Experimental study on monotonic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering,2004,26(1):21−25
[35] VANGLA P,GALI M L. Shear behavior of sand−smooth geomembrane interfaces through micro−topographical analysis[J]. Geotextiles & Geomembranes,2016,44(4):592−603.
[36] 申艳军,魏欣,杨更社,等. 岩石–混凝土界面黏结强度冻融劣化模型及试验分析[J]. 岩石力学与工程学报,2020,39(3):480−490
SHEN Yanjun,WEI Xin,YANG Gengshe,et al. Freeze−thaw degradation model and experimental analysis of rock−concrete interface bond strength[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):480−490
[37] BARTON N. Review of a new shear–strength criterion for rock joints[J]. Engineering Geology,1973,7(4):287−332.
[38] HUCK P J,LIBER T,CHIAPETTA R L. Dynamic response of soil/concrete interfaces at high pressure[J]. International Journal of Rock Mechanics and Mining Sciences,1974,13(11):132.
[39] CANAKCI H,HAMED M,CELIK F,et al. Friction characteristics of organic soil with construction materials[J]. Soils and Foundations,2016,56(6):965−972.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons