Coal Geology & Exploration
Abstract
The surface accumulation of coal gangue is a typical form of ecological environment destruction in the eastern coal mining area of China, and the prevention and control of heavy metal pollution in the soil in the accumulation area has become a hot spot in the current research. Taking the shallow soil (with a vertical depth of 40 cm and below) around a coal gangue mountain (within a radius of 300 m) in use in the Fengfeng mining area of Hebei as the research object, the active state, iron manganese oxidation state, organic state and residue state of four kinds of soil heavy metals, including Cu, Cr, As and Pb, were determined by Tessier continuous extraction method and inductively coupled plasma emission spectrometer. Based on Bioactivity Factor (MF) and Ecological Risk Assessment Coding (RAC) method, the bioavailability and ecological risk of the four soil heavy metals were calculated and evaluated, and the spatial variation characteristics of the morphological composition and bioavailability of the four soil heavy metals were analyzed.The results show that: (1) The storage of coal gangue has the effect of increasing the proportion of Cu, Cr, As and Pb active state content in the surrounding soil and reducing the proportion of residue state content, and is inversely proportional to the horizontal distance from the coal gangue mountain. When the horizontal distance reaches or approaches 300 m, the effect basically disappears. (2) The correlation coefficients between the mass fraction of soil Total Organic Carbon (TOC) and the available mass fractions of the four heavy metals all exceeded 0.6, reaching a significant positive correlation level (p<0.05), which was the main factor affecting the spatial variation characteristics of the soil heavy metal availability content in the study area. (3) The spatial variation characteristics of the bioavailability of the four soil heavy metals can be divided into two types. Type I is “MF value is generally greater than 3 and has significant spatial heterogeneity”, such as Cu, Cr. Type Ⅱ is “MF value is generally less than 3 and has significant spatial homogeneity”, such as As, Pb. (4) When the horizontal distance from the coal gangue mountain is less than 80 m and 40 m, respectively, the average MF of soil heavy metals Cu and Cr exceeds 60% of the medium risk level threshold, which should be taken seriously. It is recommended to comprehensively consider factors such as the existence status of coal gangue mountains, the cumulative effect of heavy metals in the soil and the spatial variation characteristics of bioavailability. Formulate a precise prevention and control and safe utilization strategy for soil heavy metal pollution in coal gangue accumulation areas.
Keywords
coal gangue mountain, soil heavy metal, morphological composition, bioavailability, spatial characteristic, pollutant content, ecological risk, Fengfeng mining area
DOI
10.12363/issn.1001-1986.22.03.0159
Recommended Citation
SUN Tao, SONG Shijie, CHANG Qing,
et al.
(2022)
"Spatial variation characteristics of soil heavy metal speciation and bioavailability in coal gangue accumulation area—Taking Fengfeng mining area as an example,"
Coal Geology & Exploration: Vol. 50:
Iss.
10, Article 10.
DOI: 10.12363/issn.1001-1986.22.03.0159
Available at:
https://cge.researchcommons.org/journal/vol50/iss10/10
Reference
[1] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211
[2] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960
XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960
[3] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15
LIU Feng,CAO Wenjun,ZHANG Jianming,et al. Current technological innovation and development direction of the 14th Five−Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15
[4] 王猛,马如英,代旭光,等. 煤矿区碳排放的确认和低碳绿色发展途径研究[J]. 煤田地质与勘探,2021,49(5):63−69
WANG Meng,MA Ruying,DAI Xuguang,et al. Confirmation of carbon emissions in coal mining areas and research on low–carbon green development path[J]. Coal Geology & Exploration,2021,49(5):63−69
[5] 王双明,段中会,马丽,等. 西部煤炭绿色开发地质保障技术研究现状与发展趋势[J]. 煤炭科学技术,2019,47(2):1−6
WANG Shuangming,DUAN Zhonghui,MA Li,et al. Research status and future trends of geological assurance technology for coal green development in western China[J]. Coal Science and Technology,2019,47(2):1−6
[6] 王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31
WANG Shuangming,HOU Enke,XIE Xiaoshen,et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31
[7] 马丽,王双明,段中会,等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探,10/25/2022,50(2):1−8
MA Li,WANG Shuangming,DUAN Zhonghui,et al. Potential of oil–rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration,10/25/2022,50(2):1−8
[8] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8
WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China’s coal industry during the 13th Five–Year Plan period and implementation path of“dual carbon”target[J]. Coal Science and Technology,2021,49(9):1−8
[9] 陈军,成金华. 中国矿产资源开发利用的环境影响[J]. 中国人口·资源与环境,2015,25(3):111−119
CHEN Jun,CHENG Jinhua. Environmental impacts caused by the development and utilization of mineral resources in China[J]. China Population,Resources and Environment,2015,25(3):111−119
[10] 白中科,付梅臣,赵中秋. 论矿区土壤环境问题[J]. 生态环境,2006,15(5):1122−1125
BAI Zhongke,FU Meichen,ZHAO Zhongqiu. On soil environmental problems in mining area[J]. Ecology and Environment,2006,15(5):1122−1125
[11] 侯竟,于昊辰,牟守国,等. 中国西部煤矿区土地退化时空特征及其影响因素研究[J]. 煤炭科学技术,2020,48(11):206−216
HOU Jing,YU Haochen,MU Shouguo,et al. Spatial–temporal characteristics of land degradation and its influencing factors in coal mine areas in western China[J]. Coal Science and Technology,2020,48(11):206−216
[12] 郑飞,郭欣,郭博洋,等. 重金属污染评估及其生物健康效应[J]. 中国科学:生命科学,2021,51(9):1264−1273
ZHENG Fei,GUO Xin,GUO Boyang,et al. Risk assessments and health impacts of heavy metal pollution[J]. Scientia Sinica Vitae,2021,51(9):1264−1273
[13] 丛鑫,雷旭涛,付玲,等. 海州煤矿矸石山周边土壤重金属污染特征及生态风险评价[J]. 地球与环境,2017,45(3):329−335
CONG Xin,LEI Xutao,FU Ling,et al. Pollution characteristics and ecological risk assessment of heavy metals in soils around the gangue heap of Haizhou Coal Mine,China[J]. Earth and Environment,2017,45(3):329−335
[14] LI Chang,ZHENG Liugen,JIANG Chunlu,et al. Characteristics of leaching of heavy metals from low–sulfur coal gangue under different conditions[J]. International Journal of Coal Science & Technology,2021,8:780−789.
[15] 陈昌东,张安宁,腊明,等. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征[J]. 生态环境学报,2019,28(6):1216−1223
CHEN Changdong,ZHANG Anning,LA Ming,et al. Soil heavy metal contamination and enrichment of dominant plants in coal waste piles in Pingdingshan area[J]. Ecology and Environmental Sciences,2019,28(6):1216−1223
[16] 张明亮,岳兴玲,杨淑英. 煤矸石重金属释放活性及其污染土壤的生态风险评价[J]. 水土保持学报,2011,25(4):249−252
ZHANG Mingliang,YUE Xingling,YANG Shuying. Characteristics of heavy metals release from coal waste and potential ecological risk assessment of contaminated soil around coal waste piles[J]. Journal of Soil and Water Conservation,2011,25(4):249−252
[17] 王兴明,张瑞良,王运敏,等. 淮南某煤矿邻近农田土壤中重金属的生态风险研究[J]. 生态环境学报,2016,25(5):877−884
WANG Xingming,ZHANG Ruiliang,WANG Yunmin,et al. Eco–toxicity effect of heavy metals in cropland soils collected from the vicinity of a coal mine in Huainan[J]. Ecology and Environmental Sciences,2016,25(5):877−884
[18] 李东艳,庞少鹏,徐心远,等. 煤矸石山周围农田土壤重金属形态分布及风险评价[J]. 河南理工大学学报(自然科学版),2015,34(5):722−729
LI Dongyan,PANG Shaopeng,XU Xinyuan,et al. Morphology distribution and risk assessment of heavy metals in agricultural soils around coal gangue heap[J]. Journal of Henan Polytechnic University (Natural Science),2015,34(5):722−729
[19] 刘文欣. 峰峰矿区煤矸石山规模化治理方法[J]. 洁净煤技术,2021,27(增刊2):363−366
LIU Wenxin. Scale control method of gangue hill in Fengfeng mining area[J]. Clean Coal Technology,2021,27(Sup.2):363−366
[20] TESSIER A,CAMPBELL P G C,BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844−851.
[21] ADRIANO D C. Trace elements in terrestrial environments[M]. New York:Springer,2001.
[22] JAIN C K. Metal fractionation study on bed sediments of river Yamuna,India[J]. Water Research,2004,38(3):569−578.
[23] 韩春梅,王林山,巩宗强,等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志,2005,24(12):1499−1502
HAN Chunmei,WANG Linshan,GONG Zongqiang,et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology,2005,24(12):1499−1502
[24] 林青,徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤,2008,40(5):706−711
LIN Qing,XU Shaohui. A review on competitive adsorption of heavy metals in soils[J]. Soils,2008,40(5):706−711
[25] 蔺亚青. 铜、铅、镉在离子型稀土矿区土壤中的吸附–解吸特性研究[D]. 赣州:江西理工大学,2018.
LIN Yaqing. Adsorption−desorption characteristics of copper,lead and cadmium in ion−type rare earth mining soil[D]. Ganzhou:Jiangxi University of Science and Technology,2018.
[26] 魏勇,周春财,王婕,等. 淮南矿区土壤中6种典型微量元素的空间分布特征及其生态风险评价[J]. 中国科学技术大学学报,2017,47(5):413−420
WEI Yong,ZHOU Chuncai,WANG Jie,et al. Distribution and ecological risk assessment of 6 typical trace elements in mining soils in Huainan Coalfield[J]. Journal of University of Science and Technology of China,2017,47(5):413−420
[27] 徐仲雨,周春财,孙浩,等. 新庄孜矿区土壤重金属分布与来源分析[J]. 中国煤炭地质,2017,29(9):41−44
XU Zhongyu,ZHOU Chuncai,SUN Hao,et al. Soil heavy metal distribution and source analysis in Xinzhuangzi coalmine area[J]. Coal Geology of China,2017,29(9):41−44
[28] TIPPING E,WOOF C,RIGG E,et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soil,investigated by a field manipulation experiment[J]. Environment International,1999,25(1):83−95.
[29] 曾希柏,杨佳波,李莲芳,等. 溶解性有机物对土壤中铜生物有效性的影响[J]. 农业环境科学学报,2009,28(5):883−889
ZENG Xibai,YANG Jiabo,LI Lianfang,et al. Influence of dissolved organic matter (DOM) on bioavailability of copper in soils[J]. Journal of Agro−Environment Science,2009,28(5):883−889
[30] 黄泽春,陈同斌,雷梅. 陆地生态系统中水溶性有机质的环境效应[J]. 生态学报,2002,22(2):259−269
HUANG Zechun,CHEN Tongbin,LEI Mei. Environmental effects of dissolved organic matters in terrestrial ecosystems:A review[J]. Acta Ecologica Sinica,2002,22(2):259−269
[31] 栾文楼,刘洪微,温小亚,等. 冀东平原土壤重金属元素的存在形态及有效性分析[J]. 中国地质,2010,37(2):508−514
LUAN Wenlou,LIU Hongwei,WEN Xiaoya,et al. An analysis of the modes of occurrence and validities of the heavy metal elements in soil of eastern Hebei plain[J]. Geology in China,2010,37(2):508−514
[32] 庞少鹏. 煤矿区土壤–作物系统重金属生物有效性研究[D]. 焦作:河南理工大学,2015.
PANG Shaopeng. The bioavailability of heavy metals in soil–crop system in coal–mining region[D]. Jiaozuo:Henan Polytechnic University,2015.
[33] 凌云,刘汉燚,张小婷,等. 西南地区典型土壤酸化特征及其与重金属形态活性的耦合关系[J/OL]. 环境科学,10/25/2022:1−18 [10/25/2022-05-31]. DOI:10.13227/j.hjkx.10/25/202202070.
LING Yun,LIU Hanyi,ZHANG Xiaoting,et al. Characteristics of typical soil acidification and effects of heavy metals speciation and availability in southwest China[J/OL]. Environmental Science,10/25/2022:1−18 [10/25/2022-05-31]. DOI:10.13227/j.hjkx.10/25/202202070.
[34] 陈同斌,刘更另. 土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系[J]. 中国农业科学,1993,26(1):63−68
CHEN Tongbin,LIU Gengling. Effects of soil pH on arsenic adsorption in soil and its toxicity to rice (ORYZA SATIVA L.)[J]. Scientia Agricultura Sinica,1993,26(1):63−68
[35] 郑景华,苏华美,范荣桂,等. 煤矸石土壤砷污染相关性分析[J]. 水土保持通报,2014,34(2):168−171
ZHENG Jinghua,SU Huamei,FAN Ronggui,et al. Correlation analysis for arsenic pollution in coal–gangue soil[J]. Bulletin of Soil and Water Conservation,2014,34(2):168−171
[36] 刘灿,秦鱼生,赵秀兰. 长期不同施肥对钙质紫色水稻土重金属累积及有效性的影响[J]. 农业环境科学学报,2020,39(7):1494−1502
LIU Can,QIN Yusheng,ZHAO Xiulan. Long–term effect of feriliation on accumulation and availability of heavy metal in a calcareous paddy soil[J]. Journal of Agro−Environment Science,2020,39(7):1494−1502
[37] 周鸣. 生物淋滤技术去除矿区土壤中的铜、锌、铅研究[D]. 长沙:湖南大学,2008.
ZHOU Ming. The research on treatment of Copper,Zinc,Lead in mined soils by bioleaching[D]. Changsha:Hunan University,2008.
[38] 王延东,李晓光,黎佳茜,等. 煤矸石堆存区周边土壤重金属污染特征及风险评价[J]. 硅酸盐通报,2021,40(10):3464−3471
WANG Yandong,LI Xiaoguang,LI Jiaxi,et al. Heavy metal pollution characteristics and risk evaluation of soil around coal gangue stockpile area[J]. Bulletin of the Chinese Ceramic Society,2021,40(10):3464−3471
[39] 王凯,孙星星,秦光蔚,等. 我国土壤改良修复工程技术研究进展[J]. 江苏农业科学,2021,49(20):40−48
WANG Kai,SUN Xingxing,QIN Guangwei,et al. Research progress of China’s soil improvement and remediation engineering technology[J]. Jiangsu Agricultural Science,2021,49(20):40−48
[40] 杨敏,何璐璐,饶中秀,等. 长期施肥对稻田土壤镉锌铜积累及其有效性的影响[J]. 农业现代化研究,2021,42(2):302−310
YANG Min,HE Lulu,RAO Zhongxiu,et al. Effects of long–term fertilization on accumulation and availability of Cd,Zn and Cu in paddy soil[J]. Research of Agricultural Modernization,2021,42(2):302−310
[41] 刘雯艳. 不同作物对污灌土壤中铜铬形态分布影响及有效利用的研究[D]. 晋中:山西农业大学,2014.
LIU Wenyan. Effects and effective use of plants on Cu、Cr form on sewage irrigated soil[D]. Jinzhong:Shanxi Agricultural University,2014.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons