Coal Geology & Exploration


In general, the fault distance and extension length of small faults in the working face of thick coal seams and extremely thick coal seams are short. Due to the limitation of resolution, it is generally difficult to detect such small faults with current methods and instruments. The unclear detection of small faults will have a great impact on the efficient recovery of the intelligent working face. To solve this problem, the numerical simulation and field experiment of small fault reflected in-seam wave detection in the thick coal seam are carried out. In terms of numerical simulation, the three-component elastic wave simulation of the numerical models with small faults(the drop less than 3 m) in thick coal seams(6 m) and extremely thick coal seams(20 m) is conducted by using the staggered grid finite difference method. On the basis of the spectrum analysis of the numerical simulation results, the characteristics of the direct in-seam wave and the reflected in-seam wave in different models are studied. In terms of practical exploration, through the comprehensive interpretation of transmission and reflection data of the actual developed faults in thick and extremely thick coal seams in different mining areas, the exploration of small faults by transmitted and reflected in-seam wave is studied. The research shows that the detection of small faults in the working face of thick coal seams and extremely thick coal seams by reflected in-seam wave is more recognizable and accurate than that by transmitted in-seam wave.


small fault, thick coal seam, extremely thick coal seam, reflected in-seam wave




[1] 王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295−305. WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295−305.

[2] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[3] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126. CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.

[4] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635. LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

[5] 孟凡彬. 煤系地层下的小断层识别影响因素探讨[J]. 工程地球物理学报,2019,16(3):259−265. MENG Fanbin. Discussion on factors affecting identification of small faults under coal measures strata[J]. Chinese Journal of Engineering Geophysics,2019,16(3):259−265.

[6] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.

[7] 苏晓云. 我国主要矿区典型煤层槽波赋存发育特征研究[J]. 煤炭工程,2020,52(10):137−142. SU Xiaoyun. The occurrence and development characteristics of in-seam wave in main mining areas of China[J]. Coal Engineering,2020,52(10):137−142.

[8] 赵朋朋. 槽波透射与反射联合勘探在小构造探测中的应用[J]. 煤炭工程,2017,49(5):47−50. ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47−50.

[9] 张国恩. 槽波地震勘探技术在采煤工作面构造探测中的应用[J]. 煤矿安全,2020,51(8):164−168. ZHANG Guo’en. Application of slot wave seismic exploration technology in coal mining face structure detection[J]. Safety in Coal Mines,2020,51(8):164−168.

[10] 姚小帅,冯磊,廉洁,等. 槽波地震反射法在断裂构造探测中的应用[J]. 中州煤炭,2015(9):101−104. YAO Xiaoshuai,FENG Lei,LIAN Jie,et al. Application of in−seam seismic reflection method in fracture structure detection[J]. Zhongzhou Coal,2015(9):101−104.

[11] 廉洁,李松营,王伟,等. 槽波地震勘探技术在义马矿区的应用[J]. 煤炭科学技术,2015,43(12):162−165. LIAN Jie,LI Songying,WANG Wei,et al. in-seam wave seismic exploration technology applied to Yima mining area[J]. Coal Science and Technology,2015,43(12):162−165.

[12] 赵朋朋,张军,刘毅. 槽波反射法在工作面小构造探测中的应用[J]. 中州煤炭,2016(10):138−141. ZHAO Pengpeng,ZHANG Jun,LIU Yi. Application of ISS reflection method in detection of small structures on working face[J]. Zhongzhou Coal,2016(10):138−141.

[13] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):37−40. YANG Hui. Application of reflected in–seam waves in detecting small structure in Heshun mining area of Yangquan coal group[J]. Coal Geology & Exploration,2018,46(Sup.1):37−40.

[14] 鲍远堂,王季,王强. 凌志达15207工作面反射槽波综合探测[J]. 能源与环保,2019,41(1):58−61. BAO Yuantang,WANG Ji,WANG Qiang. Integrated detection of reflected in–seam wave on 15207 working face of Lingzhida coal industry company[J]. China Energy and Environmental Protection,2019,41(1):58−61.

[15] 姬广忠,程建远,朱培民,等. 煤矿井下槽波三维数值模拟及频散分析[J]. 地球物理学报,2012,55(2):645−654. JI Guangzhong,CHENG Jianyuan,ZHU Peimin,et al. 3D numerical simulation and dispersion analysis of in–seam wave in underground coal mine[J]. Chinese Journal of Geophysics,2012,55(2):645−654.

[16] 皮娇龙,滕吉文,刘有山. 地震槽波的数学-物理模拟初探[J]. 地球物理学报,2018,61(6):2481−2493. PI Jiaolong,TENG Jiwen,LIU Youshan. Preliminary study on the numerical−physical simulation of seismic in-seam waves[J]. Chinese Journal of Geophysics,2018,61(6):2481−2493.

[17] 苏晓云. 复合煤层中夹矸对槽波探测解释断层落差的影响[J]. 煤田地质与勘探,2020,48(3):182−187. SU Xiaoyun. Influence of parting in composite coal seam on interpretation of fault throw by in-seam wave seismic exploration[J]. Coal Geology & Exploration,2020,48(3):182−187.

[18] 马彦龙. 反射槽波探测陷落柱正演模拟及应用研究[J]. 能源与环保,2021,43(5):138−144. MA Yanlong. Forward modeling and application of reflection trough wave detection collapse column[J]. China Energy and Environmental Protection,2021,43(5):138−144.

[19] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报,2015,40(8):1879−1885. WANG Ji. Experiment and method of void roadway detection using reflected in–seam wave[J]. Journal of China Coal Society,2015,40(8):1879−1885.

[20] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124. JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.