•  
  •  
 

Coal Geology & Exploration

Authors

FAN Tao, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China; Key Scientific and Technological Innovation Team of Shaanxi Province (Geophysical Exploration Technology and Equipment Innovation Team) , Xi’an 710077, China; Coal Industry Engineering Research Center (Physical Prospecting Technology and Equipment), Xi’an 710077, ChinaFollow
LI Ping, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China; Key Scientific and Technological Innovation Team of Shaanxi Province (Geophysical Exploration Technology and Equipment Innovation Team) , Xi’an 710077, China; Coal Industry Engineering Research Center (Physical Prospecting Technology and Equipment), Xi’an 710077, China
ZHAO Zhao, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
LI Wei, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
ZHAO Rui, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
ZHANG Peng, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
YAO Weihua, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
LI Yuteng, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China
FANG Zhe, Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China

Abstract

Cross-border mining in underground coal mines disrupts the order of coal resource development, and has huge hidden safety danger. Accurate detection of goafs caused by cross-border mining and their boundaries is extremely important for safe mining. Conventional mine transient electromagnetic detection methods are susceptible to interference from metal and electromagnetic signals in the roadway, and its detection accuracy is limited, which makes it difficult to meet the needs of accurate interpretation of goaf boundary. For the purpose of solving this problem, a drilling transient electromagnetic method and construction technology for transmitting and receiving signals in drilling is proposed to increase the proportion of anomalous signals in the measured data. As its being far away from the roadway and close to anomalous objects, the feasible domain constraints of OCCAM inversion algorithm was studied to further reduce the volume effect and achieve the fine resistivity imaging of cross-border mining goaf. Combining with the engineering practice of a coal mine in Shanxi, the practicability and effectiveness of this method for accurately detecting the scale and nature of the adjacent mines cross-border mining goaf are tested. The results show that the borehole transient electromagnetic method is an efficient combination and beneficial supplement of mine geophysics and drilling technology. The OCCAM inversion algorithm based on feasible region constraint can be effectively applied to the accurate imaging interpretation of the boundary of the cross-border mining goaf.

Keywords

borehole transient electromagnetic method, cross-border mining, goaf boundary, OCCAM inversion, feasible region constraint

DOI

10.12363/issn.1001-1986.21.11.0606

Reference

[1] 李智,王宇航,张结如. 地面定向钻进技术在探查小煤窑越界开采中的应用研究[J]. 中国煤炭,2019,45(9):94−98. LI Zhi,WANG Yuhang,ZHANG Jieru. Research and application of ground directional drilling technology for exploration of cross−boundary mining of small coal mines[J]. China Coal,2019,45(9):94−98.

[2] 昝昕,孔宁,郭丽娜,等. 煤矿超层越界监督管理研究[J]. 中国矿业,2019,28(5):29−32. ZAN Xin,KONG Ning,GUO Lina,et al. Analysis of the supervision and management of mining beyond specified coal seams[J]. China Mining Magazine,2019,28(5):29−32.

[3] 郭书全,胡宾鑫,张永利,等. 基于光纤微震传感的煤矿防越界开采监测系统[J]. 陕西煤炭,2021,40(3):16−21. GUO Shuquan,HU Binxin,ZHANG Yongli,et al. Coal mine cross−border mining monitoring system based on fiber−optical microseismic sensing network[J]. Shaanxi Coal,2021,40(3):16−21.

[4] 谷民帅,周光. 浅埋煤层超层越界开采防治综合技术研究[J]. 煤炭科学技术,2018,46(增刊1):47−53. GU Minshuai,ZHOU Guang. Research of comprehensive control technology of prohibiting cross boundary mining in shallow buried coal seam[J]. Coal Science and Technology,2018,46(Sup.1):47−53.

[5] 于景邨.矿井瞬变电磁法勘探[M].徐州:中国矿业大学出版社,2007.

[6] 岳建华,甘会春,刘树才,等.矿井瞬变电磁法及其应用[C]//地球物理委员会.地球物理学会第十九届年会论文集,2003:97.

[7] 时志浩,程久龙,董毅,等. 锚网支护对矿井瞬变电磁响应的影响与校正[J]. 煤矿安全,2019,50(4):108−111. SHI Zhihao,CHENG Jiulong,DONG Yi,et al. Influence of bolt–net support on mine transient electromagnetic response and its correction[J]. Safety in Coal Mines,2019,50(4):108−111.

[8] 陈健强,李宏杰,廉玉广,等. 矿井瞬变电磁井下大型铁器干扰响应特征[J]. 煤矿安全,2018,49(10):139−142. CHEN Jianqiang,LI Hongjie,LIAN Yuguang,et al. Transient electromagnetic response characteristics of large iron interference in mine[J]. Safety in Coal Mines,2018,49(10):139−142.

[9] 安晋松,寇子明,孟巧荣. 矿井瞬变电磁法干扰源测试研究[J]. 太原理工大学学报,2015,46(1):40−44. AN Jinsong,KOU Ziming,MENG Qiaorong. The experiment of interference sources to transient electromagnetic method in mine[J]. Journal of Taiyuan University of Technology,2015,46(1):40−44.

[10] 国家煤矿安全监察局.煤矿防治水细则[S].北京:煤炭工业出版社,2018.

[11] FAN Tao,QI Zhipeng,YAN Bin,et al. Full waveform inversions of borehole transient electromagnetic virtual wave fields and potential applications[J]. Journal of Environmental and Engineering Geophysics,2020,25(2):211−222.

[12] 孙怀凤,程铭,宿传玺,等. 隧(巷)道掘进工作面–钻孔瞬变电磁超前探测方法物理模拟试验研究[J]. 煤炭学报,2017,42(8):2110−2115. SUN Huaifeng,CHENG Ming,SU Chuanxi,et al. Tunnel face–borehole transient electromagnetic method and its physical experimental studies[J]. Journal of China Coal Society,2017,42(8):2110−2115.

[13] KOZHEVNIKOV N O,ANTONOV E Y,KAMNEV Y K,et al. Effects of borehole casing on TEM response[J]. Russian Geology and Geophysics,2014,55(11):1333−1339.

[14] 李学潜,韩德品,王程,等. 巷–孔瞬变电磁法在探测含导水构造中的应用[J]. 中国煤炭地质,2019,31(2):77−82. LI Xueqian,HAN Depin,WANG Cheng,et al. Application of roadway−borehole TEM in water−bearing and water conducting structure prospecting[J]. Coal Geology of China,2019,31(2):77−82.

[15] 范涛,李鸿泰,郭建磊,等. 钻孔瞬变电磁拟地震反演方法在露天煤矿采空区精细探测中的应用[J]. 地球科学与环境学报,2020,42(6):759−766. FAN Tao,LI Hongtai,GUO Jianlei,et al. Application of borehole transient electromagnetic pseudo−seismic inversion method in goaf fine detection of open−pit coal mine[J]. Journal of Earth Sciences and Environment,2020,42(6):759−766.

[16] 赵睿,范涛,李宇腾,等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探,2020,48(4):41−45. ZHAO Rui,FAN Tao,LI Yuteng,et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration,2020,48(4):41−45.

[17] 范涛. 基于钻孔瞬变电磁的煤层气压裂效果检测方法[J]. 煤炭学报,2020,45(9):3195−3207. FAN Tao. Coalbed methane fracturing effectiveness test using bore–hole transient electromagnetic method[J]. Journal of China Coal Society,2020,45(9):3195−3207.

[18] 李金铭.地电场与电法勘探[M].北京:地质出版社,2005.

[19] 韩瑜,余传涛,常锁亮. 中心回线瞬变电磁法体积效应研究[J]. 煤炭技术,2018,37(10):145−147. HAN Yu,YU Chuantao,CHANG Suoliang. Research on volume effect of central loop transient electromagnetic method[J]. Coal Technology,2018,37(10):145−147.

[20] 翁爱华. Occam反演及其在瞬变电磁测深中的应用[J]. 地质与勘探,2007,42(5):74−76. WENG Aihua. Occam’s inversion and its application to transient electromagnetic method[J]. Geology and Exploration,2007,42(5):74−76.

[21] 徐玉聪,赵宁,秦策,等. 大定源瞬变电磁一维自适应正则化反演[J]. 地质与勘探,2015,51(2):360−365. XU Yucong,ZHAO Ning,QIN Ce,et al. One–dimensional adaptive regularization inversion of transient electromagnetic sounding with a large fixed source[J]. Geology and Exploration,2015,51(2):360−365.

[22] 李刚,潘和平,王智,等. 回线源瞬变电磁法一维反演算法[J]. 煤田地质与勘探,2017,45(5):161−166. LI Gang,PAN Heping,WANG Zhi,et al. One–dimensional inversion for loop source transient electromagnetic method[J]. Coal Geology & Exploration,2017,45(5):161−166.

[23] 李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.

[24] LI Xiu,XUE Guoqiang,SONG Jianping,et al. Application of the adaptive shrinkage genetic algorithm in the feasible region to TEM conductive thin layer inversion[J]. Applied Geophysics,2005,2(4):204−210.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.