Coal Geology & Exploration
Abstract
Coal geological guarantee technologies are applied in the whole life cycle of the coal industry. The technologies are the basis and premise of realizing safe, efficient, intelligent and green mining of coal resources, and plays a key role in disaster prevention, hidden disaster-causing factor detection and intelligent mining of coal. Without any doubt, geological transparency is the crucial task to improve the ability of intelligent analysis and decision-making, automatic and precise control, and efficient coal mining. For the purpose of solving the problems faced by Wuhai Mining Area in the construction of coal mine intellectualization, such as complex geological conditions and weak ability of transparent geological support, intelligent detection technologies, represented by seismic detection while excavating and mining, are adopted to acquire the real-time geological data in the mining and excavating working face. On the basis of the results of multi-source data fusion, the 3D geological geometry model and multi-attribute model of water, fire and gas are constructed, and real-time geological data are used to drive the model update to realize digital expression of hidden geological laws and distribution characteristics of structure, water, fire and gas. The transparent geological guarantee system is constructed based on the geological model, integrating the spatial position, geometric size and attribute information of geological anomaly bodies, so as to realize the geological prediction of hidden disaster-causing factors, providing intelligent decision-making for safe and efficient mining of coal mines. The research results provide geological guarantee for realizing the intelligent mining in Wuhai Mining Area and have important referential significance for promoting the intelligent construction of coal mines in China.
Keywords
transparent geological guarantee system, intelligent detection, multi-source data fusion, 3D geological modeling, geological prediction, coal mine intellectualization
DOI
10.12363/issn.1001-1986.21.10.0601
Recommended Citation
GU Baoze, DAI Zhenhua, LI Mingxing,
et al.
(2022)
"Construction method on transparent geological guarantee technologies: A case study of Wuhai Mining Area,"
Coal Geology & Exploration: Vol. 50:
Iss.
1, Article 20.
DOI: 10.12363/issn.1001-1986.21.10.0601
Available at:
https://cge.researchcommons.org/journal/vol50/iss1/20
Reference
[1] 任国君. 煤炭企业发展和改革中的问题与对策[J]. 经营管理者,2020(5):66−67. REN Guojun. Problems and countermeasures in the development and reform of coal enterprises[J]. Manager Journal,2020(5):66−67.
[2] 王国法.“双碳”目标下,煤炭工业如何应对新挑战[N].中国煤炭报,2021–09–23(003).
[3] 康红普,王国法,王双明,等.煤炭行业高质量发展研究[J/OL].中国工程科学:1–9[2021–10–28].
KANG Hongpu,WANG Guofa,WANG Shuangming,et al.High−quality development of China’s coal industry[J/OL].Strategic Study of CAE:1–9[2021–10–28].
[4] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.
[5] 董书宁.打造智能化开采地质保障的升级版[N].中国煤炭报,2020–03–21(002).
[6] 刘再斌,董书宁,李鹏,等. 智能开采透明工作面技术架构与展望[J]. 智能矿山,2020,1(1):46−51. LIU Zaibin,DONG Shuning,LI Peng,et al. Technology architecture and prospects of transparent intelligent operating environment for coal mining[J]. Journal of Intelligent Mine,2020,1(1):46−51.
[7] 程建远,朱梦博,崔伟雄,等. 回采工作面递进式煤厚动态预测试验研究[J]. 煤炭科学技术,2019,47(1):237−244. CHENG Jianyuan,ZHU Mengbo,CUI Weixiong,et al. Experimental study of coal thickness progressive prediction in working face[J]. Coal Science and Technology,2019,47(1):237−244.
[8] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic−while−mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9.
[9] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
[10] 段建华,王云宏,王保利. 随采地震监测数据采集控制软件开发[J]. 煤田地质与勘探,2019,47(3):35−40. DUAN Jianhua,WANG Yunhong,WANG Baoli. Development of data acquisition and control software for seismic monitoring with mining[J]. Coal Geology & Exploration,2019,47(3):35−40.
[11] 程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742−1750. CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742−1750.
[12] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7. WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7.
[13] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73. MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73.
[14] 王国法.煤矿智能化建设的十大“痛点”[N].中国能源报,2021–08–16(015).
[15] 徐东卓,尹海权,李胜虎,等. 乌海盆地岗德尔山西麓断裂晚更新世–全新世活动性[J]. 昆明理工大学学报(自然科学版),2019,44(3):26−32. XU Dongzhuo,YIN Haiquan,LI Shenghu,et al. Late Pleistocene–Holocene activity of the western Gangdeershan fault in Wuhai Basin[J]. Journal of Kunming University of Science and Technology(Natural Science),2019,44(3):26−32.
[16] 任亚平. 鄂尔多斯盆地西缘卓子山矿区采空区三维地震探测研究[J]. 煤炭技术,2017,36(4):131−132. REN Yaping. 3D seismic survey for worked−out sections prospecting at Zhuozishan mine field in southern area of Ordos Basin[J]. Coal Technology,2017,36(4):131−132.
[17] 秦荣芳,曹代勇,王安民,等. 鄂尔多斯盆地西缘桌子山矿区煤层气成藏模式[J]. 煤田地质与勘探,2018,46(3):54−58. QIN Rongfang,CAO Daiyong,WANG Anmin,et al. CBM reservoir–forming model of Zhuozishan mining area in western margin of Ordos Basin[J]. Coal Geology & Exploration,2018,46(3):54−58.
[18] 杨建,王世东,黄选明. 桌子山矿区奥陶纪灰岩水中荧光性DOM分布特征[J]. 辽宁工程技术大学学报(自然科学版),2014,33(2):167−171. YANG Jian,WANG Shidong,HUANG Xuanming. Distribution characteristics of fluorescent dissolved organic matter in Zhuozishan mine area Ordovician limestone water[J]. Journal of Liaoning Technical University(Natural Science),2014,33(2):167−171.
[19] 代世峰,任德贻,唐跃刚,等. 乌达矿区主采煤层泥炭沼演化及其特征[J]. 煤炭学报,1998,23(1):7−11. DAI Shifeng,REN Deyi,TANG Yuegang,et al. The evolution and characteristic of peat swamp in Wuda coal field[J]. Journal of China Coal Society,1998,23(1):7−11.
[20] 代世峰,艾天杰,侯惠敏,等. 乌达矿区主采煤层煤相特征与煤的可选性[J]. 煤田地质与勘探,1999,27(1):10−12. DAI Shifeng,AI Tianjie,HOU Huimin,et al. Characteristics of coal facies and washability of the main minable coal seam in Wuda coal mining area[J]. Coal Geology & Exploration,1999,27(1):10−12.
[21] 刘子龙. 神华乌海能源五虎山煤矿技术改造[J]. 内蒙古煤炭经济,2018(15):148−149. LIU Zilong. Shenhua Wuhai energy Wuhushan coal mine technical transformation[J]. Inner Mongolia Coal Economy,2018(15):148−149.
[22] 余明高,贾海林,潘荣锟. 乌达矿区煤自燃预测标志气体研究[J]. 河南理工大学学报,2005,24(2):89−94. YU Minggao,JIA Hailin,PAN Rongkun. Study on sign gas for predicting coal spontaneous combustion in Wuda mine area[J]. Journal of Henan Polytechnic University,2005,24(2):89−94.
[23] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635. LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.
[24] 王长海,周晓琴,许国,等. 基于离散光滑理论的高精度三维模型构建方法[J]. 武汉大学学报(工学版),2014,47(5):604−609. WANG Changhai,ZHOU Xiaoqin,XU Guo,et al. A high−precision 3D modeling method based on discrete smooth construction theory[J]. Engineering Journal of Wuhan University,2014,47(5):604−609.
[25] 康福钧. 两硬煤层下分层火区启封与安全复采技术研究[J]. 煤炭科学技术,2012,40(5):38−41. KANG Fujun. Study on opening and safety secondary mining technology of low slice firing zone in hard roof and coal seam[J]. Coal Science and Technology,2012,40(5):38−41.
[26] 王滨,周连春,刘文郁. 综合防灭火技术在老石旦煤矿的实践与应用[J]. 西部探矿工程,2016,28(8):150−153. WANG Bin,ZHOU Lianchun,LIU Wenyu. Practice and application of integrated fire prevention technology in Laoshidan coal mine[J]. West−China Exploration Engineering,2016,28(8):150−153.
[27] 谷保泽,邱少杰. 透明化矿山建设关键技术探讨[J]. 工矿自动化,2021,47(增刊1):24−25. GU Baoze,QIU Shaojie. Discussion on key technologies for transparent mine construction[J]. Industry and Mine Automation,2021,47(Sup.1):24−25.
[28] 刘文明,程建远,刘再斌,等. 掘进工作面前方煤层底板高程动态预测的试验研究[J]. 煤田地质与勘探,2021,49(1):257−262. LIU Wenming,CHENG Jianyuan,LIU Zaibin,et al. Experimental study on dynamic prediction of coal seam floor elevation in heading face[J]. Coal Geology & Exploration,2021,49(1):257−262.
[29] 刘玲. 适用于煤矿地质条件的超前预报技术研究[J]. 当代化工研究,2021(7):44−45. LIU Ling. Research on advanced forecasting technology suitable for coal mine geological conditions[J]. Modern Chemical Research,2021(7):44−45.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons