Coal Geology & Exploration
Abstract
The high-precision detection of coal rock interface is the key and difficult point to construct the three-dimensional geological model of intelligent mining. A method is proposed to construct regional coal rock interface geological model and realize transparent working face by using single hole reflection radar in the hole along coal seam and multi hole detection results. For single borehole radar data, the coal seam radar wave velocity is calculated by using the slope of roadway wave in-phase axis, and the spatial constrained migration imaging is used to realize the accurate calculating of coal seam top/floor reflection interface. Three transparent working face construction modes matching the actual mining are formed: the long boreholes mode before mining, the short boreholes mode during mining and the joint mode of two modes. The experimental application of the short boreholes mode in 31004 working face of a mine in Shanxi Province shows that the geological model of the working face based on borehole radar depicts more detailed local information than the geological model originally constructed by collecting other information. Compared with the actual measurement after mining, the maximum error of the coal seam top interface is 0.57 m; the maximum error of the coal seam bottom interface is 0.54 m; and the coal thickness error is 0.30 m. The results show that the borehole radar can detect the interface between coal seam and roof/floor with high precision, and the construction of transparent working face can be realized by combining multi boreholes.
Keywords
borehole radar, transparent working face, holes along seam, coal seam interface
DOI
10.12363/issn.1001-1986.21.10.0598
Recommended Citation
JIANG Bici, CHENG Jianyuan, LI Ping,
et al.
(2022)
"Construction method of transparent working face based on borehole radar,"
Coal Geology & Exploration: Vol. 50:
Iss.
1, Article 19.
DOI: 10.12363/issn.1001-1986.21.10.0598
Available at:
https://cge.researchcommons.org/journal/vol50/iss1/19
Reference
[1] 朱梦博.采煤工作面高精度三维地质模型动态构建技术研究[D].北京:煤炭科学研究总院,2021.
ZHU Mengbo.Dynamic construction of high−precision 3D geological model for coal mining panel[D].Beijing:China Coal Research Institute,2021.
[2] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
[3] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126. CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
[4] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141. CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.
[5] 高卫富,翟培合,施龙青. 三维高密度电法在煤矿斑裂区探测中的应用[J]. 工程地球物理学报,2011,8(1):34−37. GAO Weifu,ZHAI Peihe,SHI Longqing. Application of 3D high–density electrical method to detection of coal mine crack areas[J]. Chinese Journal of Engineering Geophysics,2011,8(1):34−37.
[6] 姬广忠.煤巷侧帮反射槽波成像方法及应用研究[D].北京:煤炭科学研究总院,2017.
JI Guangzhong.Research on imaging methods and application of reflected in–seam wave at the roadway lateral wall of coal seam[D].Beijing:China Coal Research Institute,2017.
[7] 何文欣.工作面断层的三维槽波波场模拟与探测方法研究[D].徐州:中国矿业大学,2017.
HE Wenxin.Three dimensions in–seam wave field simulation and detection method research of working face fault[D].Xuzhou:China University of Mining and Technology,2017.
[8] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7. WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7.
[9] 覃思.煤矿井下随采地震技术的试验研究[D].北京:煤炭科学研究总院,2015.
QIN Si.Experimental study of seismic while mining in underground coal mines[D].Beijing:China Coal Research Institute,2015.
[10] 王云宏,王保利,程建远,等. 孔–巷联合随采地震相关时差层析成像[J]. 煤田地质与勘探,2021,49(3):199−204. WANG Yunhong,WANG Baoli,CHENG Jianyuan,et al. Borehole−roadway seismic−while−mining tomography using correlation time difference[J]. Coal Geology & Exploration,2021,49(3):199−204.
[11] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1−9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic–while–mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1−9.
[12] 李东亮,原静,窦文武. ZTR12矿用地质雷达在晋城矿区探测的应用研究[J]. 煤炭科技,2019,40(3):1−4. LI Dongliang,YUAN Jing,DOU Wenwu. Application research on ZTR12 mining geological radar in Jincheng mining area[J]. Coal Science & Technology Magazine,2019,40(3):1−4.
[13] 王小龙,蒋必辞,汪凯斌. 矿用电磁随钻伽马测井仪标定与试验[J]. 煤田地质与勘探,2019,47(5):208−212. WANG Xiaolong,JIANG Bici,WANG Kaibin. Calibration and experiment of mine electromagnetic LWD gamma logging tool[J]. Coal Geology & Exploration,2019,47(5):208−212.
[14] 蒋必辞,汪凯斌,潘保芝,等. 煤矿井下电磁波无线随钻测井软件设计与实现[J]. 煤田地质与勘探,2016,44(6):152−158. JIANG Bici,WANG Kaibin,PAN Baozhi,et al. Design and implementation of LWDEWCM software[J]. Coal Geology & Exploration,2016,44(6):152−158.
[15] ANNAN A P. Radio interferometry depth sounding:Part I−Theoretical discussion[J]. Geophysics,1973,38(3):557−580.
[16] ROSSITER J R,STRANGWAY D W,ANNAN A P,et al. Detection of thin layers by radio interferometry[J]. Geophysics,1975,40(2):299−308.
[17] 刘万里,马修泽,张学亮.基于探地雷达的特厚煤层厚度动态探测技术[J/OL].煤炭学报.https://doi.org/10.13225/j.cnki.jccs.2021.0671.
LIU Wanli,MA Xiuze,ZHANG Xueliang.Dynamic detection technology of extra–thick coal seam thickness based on ground penetrating radar[J/OL].Journal of China Coal Society.https://doi.org/10.13225/j.cnki.jccs.2021.0671.
[18] 钟声.钻孔雷达与数字摄像动态勘察技术若干关键问题研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
ZHONG Sheng.Key issues of dynamic exploration survey based on the borehole radar and digital imaging[D].Wuhan:Institute of Rock and Soil Mechanics,the Chinese Academy of Sciences,Wuhan,P. R. China,2008.
[19] VOGT D,PISANI P D.Borehole radar delineation of the VCR:An economically important sedimentary deposit[C]//Institute of Electrical and Electronics Engineers.Tenth International Conference on Ground Penetrating Radar,Deft, Netherlands,21-24 June,2004.
[20] 刘四新,宋梓豪,程建远,等. 利用钻孔雷达探测煤矿井下顶底板界面的数值模拟研究[J]. 世界地质,2021,40(3):711−720. LIU Sixin,SONG Zihao,CHENG Jianyuan,et al. Numerical simulation research on detecting underground coal mine roof and floor using borehole radar[J]. Global Geology,2021,40(3):711−720.
[21] 曾昭发,刘四新,冯晅,等.探地雷达原理与应用[M].北京:电子工业出版社,2010.
[22] WARREN D C,GIANNOPOULOS D A,GIANNAKIS D I,et al. GprMax:Open source software to simulate electromagnetic wave propagation for ground penetrating radar[J]. Computer Physics Communications,2016,209:163−170.
[23] 冯晅,曾昭发,刘四新,等.探地雷达信号处理[M].北京:科学出版社,2014.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons