•  
  •  
 

Coal Geology & Exploration

Abstract

The problems of many water diversion faults and, concealed water diversion structure have led to the difficulty of water disaster prevention and control of Ordovician limestone in No.6 coal seam in Tangjiahui Coal Mine. After continuous exploration and practice, a variety of advanced technologies has been introduced to obtain a large number of geological and hydrogeological data, and construct an intelligent geological guarantee system. The technical ideas of “geophysical and drilling exploration, joint grouting treatment up-hole and down-hole, in-hole transient electromagnetic fine exploration, inter-hole resistivity detection of grouting effect, and joint monitoring of coal seam floor by micro-seismic and electromagnetic methods” are formed. Through the integration of all kinds of static data, dynamic data and real-time data, the digital modeling of water filling factors such as faults, broken zones, aquifers and low resistivity anomaly areas is founded, so as to make geological bodies and drilling and geophysical data visible and transparent. Then a whole time-space prevention and control system of Ordovician water disasters based on transparent geology is established, realizing the precise exploration, targeted treatment, effect detection and mining monitoring of Ordovician water disasters under the condition of mining under pressure. It has obtained satisfactory application results.

Keywords

Ordovician water disaster, geological transparency, whole time-space prevention and control, effect examination, monitoring and early warning

DOI

10.12363/issn.1001-1986.21.11.0619

Reference

[1] 樊娟. 黔北矿区青龙煤矿瞬变电磁法在探查岩溶含水层特征中的应用[J]. 煤矿安全,2021,52(7):72−78. FAN Juan. Application of transient electromagnetic method in exploring karst aquifer in Qinglong Coal Mine of Qianbei mining area[J]. Safety in Coal Mines,2021,52(7):72−78.

[2] 王程,蒋齐平. 几种矿井电法的应用分析[J]. 中国煤炭地质,2017,29(3):76−80. WANG Cheng,JIANG Qiping. Applied analysis for some mine electrical methods[J]. Coal Geology of China,2017,29(3):76−80.

[3] 杨焱钧,朱书阶,张孝文,等. 反射槽波探测技术中速度分析方法研究[J]. 煤田地质与勘探,2020,48(5):218−224. YANG Yanjun,ZHU Shujie,ZHANG Xiaowen,et al. Velocity analysis method of reflected in−seam wave detection technique[J]. Coal Geology & Exploration,2020,48(5):218−224.

[4] 吴荣新,沈国庆,王汉卿,等. 综采工作面薄煤区无线电波多频率透视精细探测[J]. 煤田地质与勘探,2020,48(4):34−40. WU Rongxin,SHEN Guoqing,WANG Hanqing,et al. Multi frequency perspective fine detection of radio wave for thin coal areas in fully mechanized coal face[J]. Coal Geology & Exploration,2020,48(4):34−40.

[5] 方刚. 带压区巷道掘进防治水钻探工程及水化学特征研究[J]. 煤炭工程,2018,50(2):59−62. FANG Gang. Research on water prevention−control drilling engineering and hydrochemical characteristics of roadway driving under water pressure zone[J]. Coal Engineering,2018,50(2):59−62.

[6] 高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术[J]. 煤矿安全,2021,52(5):87−95. GAO Yaoquan,FANG Gang,YAN Xingda. Exploration and control technology of Ordovician limestone water hazard in deep area of Xingdong Coal Mine[J]. Safety in Coal Mines,2021,52(5):87−95.

[7] 刘再斌. 基于三维定向孔的深部水害探查治理技术研究[J]. 煤炭工程,2018,50(8):53−56. LIU Zaibin. Study on deep mine water detection and governance techniques based on 3D directional drilling[J]. Coal Engineering,2018,50(8):53−56.

[8] 高尚,孙晓宇,戴亚男,等. 煤层底板薄层灰岩地面定向孔注浆技术[J]. 建井技术,2021,42(4):39−44. GAO Shang,SUN Xiaoyu,DAI Ya’nan,et al. Grouting technology with ground directional drilling hole for thin limestone of seam floor[J]. Mine Construction Technology,2021,42(4):39−44.

[9] 方俊. 基于井下定向钻孔的矿井地质异常体探查方法与应用[J]. 煤田地质与勘探,2021,49(4):269−277. FANG Jun. Exploration method of underground geological anomaly and its application based on directional drilling[J]. Coal Geology & Exploration,2021,49(4):269−277.

[10] 张杰,姚宁平,李乔乔. 煤矿井下定向钻进技术在矿井地质勘探中的应用[J]. 煤矿安全,2013,44(10):131−134. ZHANG Jie,YAO Ningping,LI Qiaoqiao. Application of directional drilling technology in mines geological exploration[J]. Safety in Coal Mines,2013,44(10):131−134.

[11] 张坤,方海,李邵东,等. 大埋深坚硬顶板厚煤层冲击地压微震监测及防治措施[J]. 中国矿业,2021,30(10):77−83. ZHANG Kun,FANG Hai,LI Shaodong,et al. Microseismic monitoring and prevention of working face rock burst in thick coal seam with hard roof and large buried depth[J]. China Mining Magazine,2021,30(10):77−83.

[12] LI Zhen,XU Rongchao. An early–warning method for rock failure based on Hurst exponent in acoustic emission/microseismic activity monitoring[J]. Bulletin of Engineering Geology and the Environment,2021,80(10):7791−7805.

[13] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635. LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi−attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

[14] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.

[15] 马丽,段中会,张建军,等. 基于精细勘查的煤矿地质保障信息系统[J]. 中国煤炭地质,2020,32(9):70−73. MA Li,DUAN Zhonghui,ZHANG Jianjun,et al. Coalmine geological security information system based on fine prospecting[J]. Coal Geology of China,2020,32(9):70−73.

[16] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284. YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

[17] 朱树来. 矿井孔中瞬变电磁法探测技术研究与应用[J]. 地下空间与工程学报,2020,16(增刊1):236−240. ZHU Shulai. Research and application of drillhole transient electromagnetic detection technology[J]. Chinese Journal of Underground Space and Engineering,2020,16(Sup.1):236−240.

[18] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264. JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.

[19] 靳德武,乔伟,李鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10−17. JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for mine water hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10−17.

[20] 陆自清. 基于边界元方法的次级断裂信息挖掘试验研究[J]. 煤田地质与勘探,2020,48(5):211−217. LU Ziqing. Experiment of secondary fault information mining based on boundary element method[J]. Coal Geology & Exploration,2020,48(5):211−217.

[21] 陆自清. 基于卡尔曼滤波的动态地质模型导向方法[J]. 石油钻探技术,2021,49(1):113−120. LU Ziqing. Geosteering methods of a dynamic geological model based on Kalman filter[J]. Petroleum Drilling Techniques,2021,49(1):113−120.

[22] 段建华. 煤层底板突水综合监测技术及其应用[J]. 煤田地质与勘探,2020,48(4):19−28. DUAN Jianhua. Integrated monitoring technology of water inrush from coal seam floor and its application[J]. Coal Geology & Exploration,2020,48(4):19−28.

[23] 王鑫,吴际,刘超,等. 基于LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报,2018,44(4):772−784. WANG Xin,WU Ji,LIU Chao,et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(4):772−784.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.