Coal Geology & Exploration


For a better flow monitoring at the borehole of underground gas drainage in coal mines, and in response to the influence of factors such as complex composition, poor purity and poor stability of the medium in the pipeline on the measurement accuracy of drainage flow parameters, a set of adaptive detection system of ultrasonic flow for mining boreholes is designed with the time difference method as the measurement principle and the double threshold comparison method as the detection method. The overall scheme of the detection system is designed based on the analysis of the key problems affecting the measurement accuracy of the double threshold comparison method, and several key modules of the excitation signal amplification circuit, the received signal conditioning circuit and the adaptive circuit composed of the peak detection circuit and gain control circuit are discussed in detail. The workflow of the operation software of the detection system is described. The function and performance of the detection system are tested through the test of adaptability to working conditions and environment and the accuracy performance test. The test results show that the system can adapt to the working conditions in the gas drainage drilling pipeline and realize high-precision gas flow measurement.


time difference method, double threshold comparison method, adaptivity, ultrasonic, gas flowmeter




[1] 宁小亮. 煤与瓦斯突出预警技术研究现状及发展趋势[J]. 工矿自动化,2019,45(8):25−31. NING Xiaoliang. Research status of early warning technology of coal and gas outburst and its development trend[J]. Industry and Mine Automation,2019,45(8):25−31.

[2] 国家安全生产监督管理总局机关子站.关于印发《煤矿瓦斯抽采达标暂行规定》的通知安监总煤装[2011]163号[S].北京:国家安全生产监督管理总局,2011.

[3] 赵华. 煤矿瓦斯防治技术的现状与问题[J]. 内蒙古煤炭经济,2021,38(6):109−110. ZHAO Hua. Present situation and problems of coal mine gas prevention and control technology[J]. Inner Mongolia Coal Economy,2021,38(6):109−110.

[4] 徐永忠. 煤矿瓦斯防治技术研究[J]. 当代化工研究,2020,20(9):155−156. XU Yongzhong. Research on coal mine gas control technology[J]. Modern Chemical Research,2020,20(9):155−156.

[5] 乔鑫. 定向长钻孔消除工作面抽采空白带技术应用[J]. 煤炭技术,2021,40(12):149−152. QIAO Xin. Application of directional long borehole to eliminate blank zone of working face[J]. Coal Technology,2021,40(12):149−152.

[6] 张亚潮,杨乐乐,窦成义,等. 高瓦斯工作面定向长钻孔以孔代巷瓦斯抽采技术[J]. 陕西煤炭,2021,40(6):1−7. ZHANG Yachao,YANG Lele,DOU Chengyi,et al. Gas extraction technology of directional long borehole instead of roadway in working face with high gas[J]. Shaanxi Coal,2021,40(6):1−7.

[7] 牛朝亮. 论国内煤矿瓦斯监测监控系统现状与发展[J]. 能源与节能,2016,20(2):113−114. NIU Chaoliang. Discussion on the current situation and development of gas monitoring and control system in the domestic coal mine[J]. Energy and Energy Conservation,2016,20(2):113−114.

[8] 许文达.涡街与V锥流量计在蒸汽计量中的特性研究[D].天津:天津大学,2013.

XU Wenda.Research on characteristics of vortex and V–cone flowmeter in the steam measurement[D].Tianjin:Tianjin University,2013.

[9] 李涛. 煤矿管道瓦斯流量计量技术研究[J]. 工矿自动化,2012,39(11):14−17. LI Tao. Research of metering technology of pipeline gas flow of coal mine[J]. Industry and Mine Automation,2012,39(11):14−17.

[10] 刘春峰,杨凌霄. 孔板流量计在煤矿瓦斯抽采计量中的应用及常见问题分析[J]. 煤矿安全,2017,48(11):175−178. LIU Chunfeng,YANG Lingxiao. Application of qrifice plate flowmeter in coal mine gas drainage measurement and analysis of common problems[J]. Safety in Coal Mines,2017,48(11):175−178.

[11] 闫井超. 天然气流量计类型与计量精度影响分析[J]. 石化技术,2017,29(1):163−164. YAN Jingchao. Analysis on the influence of natural gas flowmeter type and metering accuracy[J]. Petrochemical Industry Technology,2017,29(1):163−164.

[12] 刘阳.超声波流量检测技术研究[D].西安:西安石油大学,2017.

LIU Yang.Study of ultrasonic flow measurement technique methods[D].Xi’an:Xi’an Shiyou University,2017.

[13] 马建,李泽芳,张德胜. 基于超声波时差法的管道流量测定仪设计[J]. 工矿自动化,2021,47(2):93−97. MA Jian,LI Zefang,ZHANG Desheng. Design of pipeline flow meter based on ultrasonic time difference method[J]. Industry and Mine Automation,2021,47(2):93−97.

[14] 黎裕熙.基于结构与流场分析的超声波流量计结构设计[D].杭州:浙江大学,2015.

LI Yuxi.Ultrasonic flowmeter structure design based on structure and flow field analysis[D].Hangzhou:Zhejiang University,2015.

[15] 郭心伟.优化结构改善气体超声波流量计流场适应性的相关研究[D].济南:山东大学,2021.

GUO Xinwei.Study on optimizing structure to improve flow field adaptability of gas ultrasonic flowmeter[D].Jinan:Shandong University,2021.

[16] 虞结勇.超声波气体流量计信号处理方法研究[D].杭州:中国计量大学,2018.

YU Jieyong.Research on signal processing method of ultrasonic gas flowmeter[D].Hangzhou:China Jiliang University,2018.

[17] 杜晓泽,刘胜祥. 时差法超声波流量计流量系数影响因素分析[J]. 工业计量,2019,29(2):14−15. DU Xiaoze,LIU Shengxiang. Analysis of factors affecting flow coefficient of time difference ultrasonic flowmeter[J]. Industrial Metrology,2019,29(2):14−15.

[18] 刘金.超声波在非均匀气固两相介质中的传播特性研究[D].南京:南京理工大学,2019.

LIU Jin.Propagation characteristics of ultrasound in non–uniform gas–solid two–phase medium[D]. Nanjing:Nanjing University of Science & Technology,2019.

[19] 冯亚峰,钱素琴,孔建会. 一种窄脉冲峰值电压检测保持电路的研究[J]. 仪表技术,2017(7):5−7. FENG Yafeng,QIAN Suqin,KONG Jianhui. Research on a narrow pulse peak voltage detection and hold circuit[J]. Instrumentation Technology,2017(7):5−7.

[20] 全国流量容量计量技术委员会.中华人民共和国国家计量检定规程:超声流量计:JJG 1030—2007[S].北京:国家质量监督检验检疫总局,2007.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.