•  
  •  
 

Coal Geology & Exploration

Abstract

The gas content of coal reservoir is the core parameter of coalbed methane production. There is an error between the measured gas content and the real gas content of coal reservoir. In this paper, based on the gas production of Haishiwan coalbed methane wells in different periods and the decrease of the "constant volume" of the gas content of coal reservoirs, the real-time gas content of coal reservoirs is inverted, and the change rule of the real-time gas content in the process of coalbed methane well drainage is explored. The results show that: (1) The gas content of coal reservoir decreases linearly with the drainage time t. the gas production of different long coalbed methane wells is consistent with the decrease of coal reservoir gas content, and follows the characteristics of "constant volume" gas production, that is, the gas production of single coalbed methane well is the "constant volume" production of coal matrix; (2) The gas production of coalbed methane wells has nothing to do with the original gas content of coal reservoir, but is related to the reduction of gas content; (3) The coal reservoir is a water-resistant layer, and hydraulic fracturing is difficult to change the combined water state of coal-based micropore channels. The CH4 production process is controlled by the water-coal interface. Coalbed methane production is the result of mass transfer at the three-phase interface of "CH4, coal and water", in which water turbulence provides and transfers energy to stimulate the desorption and production of CH4 in block coal.

Keywords

Yaojie mining area, Haishiwan Coal Mine, coalbed methane, constant volume, dynamic inversion of drainage data

DOI

10.3969/j.issn.1001-1986.2021.06.007

Reference

[1] QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society, 2021, 46(8): 2387-2399. 秦勇. 煤系气聚集系统与开发地质研究战略思考[J]. 煤炭学报, 2021, 46(8): 2387-2399.

[2] LYU Yumin, LIU Yinghong, CHEN Guihua, et al. Analysis of factors affecting productivity of CBM in horizontal wells in southern Qinshui Basin[J]. Coal Science and Technology, 2020, 48(10): 225-232. 吕玉民, 柳迎红, 陈桂华, 等. 沁水盆地南部煤层气水平井产能影响因素分析[J]. 煤炭科学技术, 2020, 48(10): 225-232.

[3] YI Yongxiang, TANG Shuheng, ZHANG Songhang, et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration, 2019, 47(5): 118-126. 伊永祥, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探, 2019, 47(5): 118-126.

[4] ZHAO Xinglong. Reasonable production allocation and drainage control of coalbed methane wells in South Yanchuan CBM field[J]. Reservoir Evaluation and Development, 2020, 10(3): 115-120. 赵兴龙. 延川南煤层气井合理配产及其排采控制[J]. 油气藏评价与开发, 2020, 10(3): 115-120.

[5] HU Haiyang, ZHAO Lingyun, CHEN Jie, et al. Influence of coal seam sensitivity on CBM drainage and control strategy in Fa'er mining area[J]. Coal Science and Technology, 2020, 48(7): 334-340. 胡海洋, 赵凌云, 陈捷, 等. 发耳矿区煤储层敏感性对煤层气排采影响及控制对策[J]. 煤炭科学技术, 2020, 48(7): 334-340.

[6] TAO Shu, TANG Dazhen, XU Hao, et al. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, southern Qinshui Basin[J]. International Journal of Coal Geology, 2014, 134/135: 38-45.

[7] YU Lizhu, SHI Wei, YAO Xiaoli, et al. Quantitative control technology for deep coalbed methane horizontal wells in Linfen Block[J]. Journal of China Coal Society, 2018, 43(Sup. 2): 499-504. 余莉珠, 师伟, 姚晓莉, 等. 临汾区块深层煤层气水平井定量化排采控制技术[J]. 煤炭学报, 2018, 43(增刊2): 499-504.

[8] ZHANG Sui'an, CAO Lihu, DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society, 2014, 39(9): 1927-1931. 张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9): 1927-1931.

[9] MA Dongmin, WANG Chuantao, XIA Yucheng, et al. Optimization program of fracturing parameters for coalbed methane wells in Dafosi Minefield[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 263-269. 马东民, 王传涛, 夏玉成, 等. 大佛寺井田煤层气井压裂参数优化方案[J]. 西安科技大学学报, 2019, 39(2): 263-269.

[10] MU Yongliang, FAN Nan, WANG Jiren. CBM recovery technology characterized by docking ground multi-branch horizontal wells with underground boreholes[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019: 1-15.

[11] LI Dong, ZHANG Xuemei, HAO Jingyuan, et al. Feasibility study of coalbed methane content test based on adsorption approved[J]. Coal Science and Technology, 2018, 46(9): 158-162. 李东, 张学梅, 郝静远, 等. 基于吸附验证的煤层气含量测定的可行性研究[J]. 煤炭科学技术, 2018, 46(9): 158-162.

[12] XIE Xiangxiang, ZHANG Yugui, JIANG Jiayu, et al. The influence of drilling fluid on coal bed methane desorption loss of coal core[J]. Coal Geology & Exploration, 2015, 43(1): 30-34. 谢向向, 张玉贵, 姜家钰, 等. 钻井液对煤心煤层气解吸损失量的影响[J]. 煤田地质与勘探, 2015, 43(1): 30-34.

[13] LI Junqian, LU Shuangfang, ZHANG Pengfei, et al. Estimation of gas-in-place content in coal and shale reservoirs: A process analysis method and its preliminary application[J]. Fuel, 2020, 259: 116266.

[14] FU Xuehai, ZHANG Xiaodong, WEI Chongtao. Review of research on testing, simulation and prediction of coalbed methane content[J]. Journal of China University of Mining & Technology, 2021, 50(1): 13-31. 傅雪海, 张小东, 韦重韬. 煤层含气量的测试、模拟与预测研究进展[J]. 中国矿业大学学报, 2021, 50(1): 13-31.

[15] LIU Gang, ZHAO Qianping, GAO Chao, et al. A critical desorption time method to improve the calculation accuracy of gas loss in shale gas content testing[J]. Natural Gas Industry, 2019, 39(2): 71-75. 刘刚, 赵谦平, 高潮, 等. 提高页岩含气量测试中损失气量计算精度的解吸临界时间点法[J]. 天然气工业, 2019, 39(2): 71-75.

[16] LI Zechen, DU Wenfeng, HU Jinkui, et al. Interpretation method of gas content in logging of Linxing block in Ordos Basin[J]. Journal of China Coal Society, 2018, 43(Sup. 2): 490-498. 李泽辰, 杜文凤, 胡进奎, 等. 鄂尔多斯盆地临兴区块测井含气量解释方法[J]. 煤炭学报, 2018, 43(增刊2): 490-498.

[17] SUN Siqing, ZHANG Qun, ZHENG Kaige, et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society, 2020, 45(7): 2523-2530. 孙四清, 张群, 郑凯歌, 等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报, 2020, 45(7): 2523-2530.

[18] CHEN Gang, QIN Yong, HU Zongquan, et al. Variations of gas content in deep coalbeds of different coal ranks[J]. Geological Journal of China Universities, 2015, 21(2): 274-279. 陈刚, 秦勇, 胡宗全, 等. 不同煤阶深煤层含气量差异及其变化规律[J]. 高校地质学报, 2015, 21(2): 274-279.

[19] LI Shugang, BAI Yang, LIN Haifei, et al. Effect of N2/CO2 injection pressure on CH4 desorption in gas-bearing coal rock[J]. Natural Gas Industry, 2021, 41(3): 80-89. 李树刚, 白杨, 林海飞, 等. N2/CO2注入压力对含瓦斯煤岩中甲烷解吸的影响[J]. 天然气工业, 2021, 41(3): 80-89.

[20] CHENG Yiyan, CHEN Zhenlong, LI Song, et al. Characteristics of coalbed methane accumulation in Bide-Santang syncline, western Guizhou and favorable sector[J]. Geological Bulletin of China, 2021, 40(7): 1140-1148. 程轶妍, 陈贞龙, 李松, 等. 黔西比德-三塘向斜煤层气藏特征及甜点区段[J]. 地质通报, 2021, 40(7): 1140-1148.

[21] HAN Wenlong, WANG Yanbin, LIU Du, et al. The matching of gas production curve characteristic and reservoir conditions in vertical coalbed methane wells[J]. Coal Geology & Exploration, 2019, 47(3): 97-104. 韩文龙, 王延斌, 刘度, 等. 煤层气直井产气曲线特征及其与储层条件匹配性[J]. 煤田地质与勘探, 2019, 47(3): 97-104.

[22] LI Wei. Mechanism of CO2 pools formation and CO2 control technology of Haishiwan coalfield[D]. Xuzhou: China University of Mining and Technology, 2011. 李伟. 海石湾井田CO2成藏演化机制及防治技术研究[D]. 徐州: 中国矿业大学, 2011.

[23] ZHANG Qun, FAN Zhangqun. Simulation experiment and result analysis on lost gas content of coalbed methane[J]. Journal of China Coal Society, 2019, 34(12): 1649-1654. 张群, 范章群. 煤层气损失气含量模拟试验及结果分析[J]. 煤炭学报, 2019, 34(12): 1649-1654.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.