•  
  •  
 

Coal Geology & Exploration

Abstract

With the continuous development of coal resources, the upper group of coal in some coal mines has been mined out, and it is urgent to solve the detection problem of the lower group of coal. Affected by the goaf formed by the upper group of coal, the seismic energy absorption and scattering attenuation of the lower group of coal are significant, and the signal-to-noise ratio of the data is low. The detection of the lower group of coal under the goaf by 3D seismic exploration is still in the exploration stage. In this paper, the 3D seismic exploration project of the lower group coal in the goaf of Dongpang Coal Mine of Jizhong Energy Group is discussed. The detection effect of lower group coal beneath goafs of different ages is compared and analyzed by using the technologies of "2W1H"(Wide-band, Wide azimuth and High-density) acquisition, high-precision data processing and attribute body interpretation. The results show that the seismic information on the lower group of coal can be obtained by using the "2W1H" acquisition technology. The technologies of amplitude compensation and seismic frequency extension make the reflection wave group of No.9 coal seam plenty and continuous. When the goafs'age is more than 10 years, the broken strata are compacted and relatively stable, and the reflection wave of the lower group of coal is easy to track. When the goafs'age is less than 10 years, the broken strata are not compacted, leading to weak and disordered reflected wave energy of the lower group of coal. This knowledge has a certain guiding significance for the detection of the lower group of coal in similar coal mines.

Keywords

3D seismics exploration, goaf, lower group of coal, different age, Dongpang Coal Mine of Jizhong Energy Group

DOI

10.3969/j.issn.1001-1986.2021.06.028

Reference

[1] ZHANG Guangzhong, ZHANG Yuncheng, LI Changhe, et al. 3D seismic exploration technology for lower coal group in gob area[J]. Coal Geology & Exploration, 2009, 37(1): 66–68. 张广忠, 张运成, 李长河, 等. 煤矿采空区下组煤三维地震勘探技术[J]. 煤田地质与勘探, 2009, 37(1): 66–68.

[2] SHI Yu, LIU Wenming. Application of 3D seismic prospecting to small coal mined-out area[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5): 573–579. 石瑜, 刘文明. 三维地震勘探技术在小窑采空区探测中的应用[J]. 工程地球物理学报, 2018, 15(5): 573–579.

[3] TANG Hanping. 3D seismic prospecting technology in coal mine gob area with complex seismic geology[J]. China Coal, 2013, 39(12): 35–37. 唐汉平. 复杂地震地质条件下煤矿采空区三维地震勘探技术[J]. 中国煤炭, 2013, 39(12): 35–37.

[4] LI Lianying, XUE Junjie, ZHAO Xuanxuan, et al. The exploration of mined-out areas by integrated geophysical method[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 377–380. 李莲英, 薛俊杰, 赵煊煊, 等. 应用综合物探方法探查煤层采空区[J]. 物探与化探, 2017, 41(2): 377–380.

[5] QIN Si, CHENG Jianyuan, HU Jiwu, et al. Coal-seam-ground-seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society, 2015, 40(3): 636–639. 覃思, 程建远, 胡继武, 等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报, 2015, 40(3): 636–639.

[6] LIU Yinbo. Application and new industrial research of three-dimensional seismic exploration survey in goaf[J]. Coal and Chemical Industry, 2017, 40(1): 136–140. 刘银波. 采空区下三维地震勘探新技术研究及应用[J]. 煤炭与化工, 2017, 40(1): 136–140.

[7] ZHANG Zhao, ZHANG Longfei, DUAN Gang, et al. Seismic response characteristics of coal goaf based on forward modeling[J]. CT Theory and Applications, 2021, 30(3): 291–300. 张昭, 张龙飞, 段刚, 等. 基于正演模拟的煤层采空区地震响应特征[J]. CT理论与应用研究, 2021, 30(3): 291–300.

[8] LIU Zhen, WANG Yutao, LIU Xiaoping, et al. Exploration and quantitative evaluation of overburden strata "three zones" in deep strip mining[J]. Coal Geology & Exploration, 2020, 48(3): 17–23. 刘震, 王玉涛, 刘小平, 等. 深部条带开采覆岩"三带"探测及量化评判[J]. 煤田地质与勘探, 2020, 48(3): 17–23.

[9] YANG Yong, CHEN Qingtong. Application and study of integrated geophysical prospecting in gob exploration of room-and-pillar system[J]. China Coal, 2017, 43(8): 47–51. 杨勇, 陈清通. 综合物探方法在房采采空区勘查中的应用研究[J]. 中国煤炭, 2017, 43(8): 47–51.

[10] TANG Hanping. 3D seismic exploration technology of shallow coal mine goaf[J]. Energy Technology and Management, 2014, 39(4): 163–164. 唐汉平. 浅层煤矿采空区三维地震勘探技术[J]. 能源技术与管理, 2014, 39(4): 163–164.

[11] XUE Guoqiang, PAN Dongming, YU Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187–2192. 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187–2192.

[12] LI Qinfeng. New detection technology of Ordovician limestone water rich property and high accuracy 3D seismic exploration under goaf[J]. Coal and Chemical Industry, 2016, 39(12): 24–26. 李钦锋. 采空区下高精度三维地震勘探及奥灰富水性探测新技术[J]. 煤炭与化工, 2016, 39(12): 24–26.

[13] CHENG Jianyuan, WANG Qianyao, ZHU Shujie. Discussion on parameters of high density 3D seismic exploration acquisition in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6): 25–32. 程建远, 王千遥, 朱书阶. 煤矿采区高密度三维地震采集参数讨论[J]. 煤田地质与勘探, 2020, 48(6): 25–32.

[14] NING Hongxiao, TANG Donglei, PI Hongmei, et al. The technology and development of "WBH" seismic exploration in land, China[J]. Geophysical Prospecting for Petroleum, 2019, 58(5): 645–653. 宁宏晓, 唐东磊, 皮红梅, 等. 国内陆上"两宽一高"地震勘探技术及发展[J]. 石油物探, 2019, 58(5): 645–653.

[15] YANG Guangming, JIN Xueliang, ZHANG Xianxu, et al. Application of broadband and wide azimuth processing technology in full digital high density seismic exploration in Huaibei mining area[J]. Coal Geology & Exploration, 2020, 48(6): 55–63. 杨光明, 金学良, 张宪旭, 等. 宽频宽方位处理技术在淮北矿区全数字高密度地震勘探中的应用[J]. 煤田地质与勘探, 2020, 48(6): 55–63.

[16] LIU Yimou, YIN Xingyao, ZHANG Sanyuan, et al. Recent advances in wide-azimuth seismic exploration[J]. Oil Geophysical Prospecting, 2014, 49(3): 596–610. 刘依谋, 印兴耀, 张三元, 等. 宽方位地震勘探技术新进展[J]. 石油地球物理勘探, 2014, 49(3): 596–610.

[17] LIU Jun, ZHAO Wei, HAN Biwu. Application of high-precision 3D seismic exploration technology in Huainan mining area[J]. Coal Geology & Exploration, 2020, 48(6): 8–14. 刘俊, 赵伟, 韩必武. 淮南矿区高精度三维地震勘探技术应用[J]. 煤田地质与勘探, 2020, 48(6): 8–14.

[18] JIN Xueliang, WANG Qi. Pattern and effect of the high density 3D seismic exploration in coal mining districts[J]. Coal Geology & Exploration, 2020, 48(6): 1–7. 金学良, 王琦. 煤矿采区高密度三维地震勘探模式与效果[J]. 煤田地质与勘探, 2020, 48(6): 1–7.

[19] MO Liangtai. Study on geophysical comprehensive exploration method of coal seam goaf in LZC area of Inner Mongolia[D]. Xuzhou: China University of Mining and Technology, 2019. 莫亮台. 内蒙LZC地区煤层采空区地球物理综合探测方法研究[D]. 徐州: 中国矿业大学, 2019.

[20] LI Xuewen. Application of integrated prospecting technology in gob detection[J]. Coal Geology of China, 2015, 27(10): 58–61. 李学文. 综合勘探技术在采空区探测中的应用[J]. 中国煤炭地质, 2015, 27(10): 58–61.

[21] TIAN Jinrui, YA Dongju, QIU Zhaotai. Wave group characteristics of goaf on the seismic profile and comparative analysis[J]. Coal and Chemical Industry, 2017, 40(3): 105–107. 田锦瑞, 亚东菊, 邱兆泰. 采空区在地震剖面上的波组特征及对比分析[J]. 煤炭与化工, 2017, 40(3): 105–107.

[22] CHENG Yan, ZHAO Pu, LIN Jiandong, et al. Application of seismic waveform classification technology in interpretation of geological abnormal body[J]. Coal Geology & Exploration, 2020, 48(6): 87–92. 程彦, 赵镨, 林建东, 等. 地震波形分类技术在地质异常体解释中的应用[J]. 煤田地质与勘探, 2020, 48(6): 87–92.

[23] XIAO Lifeng. Application of integrated geophysical exploration method to exploring mined-out area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 658–664. 肖立锋. 综合物探方法在采空区探测中的应用[J]. 工程地球物理学报, 2019, 16(5): 658–664.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.