Coal Geology & Exploration
Abstract
To investigate the influence of lime content on loess strength and its microscopic mechanism, different proportions of lime were used to improve loess. Through direct shear test, mercury intrusion porosimetry and scanning electron microscopy, the strength characteristics and microstructure changes of compacted loess and modified loess with different lime contents were analyzed qualitatively and quantitatively, and the microscopic mechanism of lime-improved loess was analyzed in depth. The results show that the shear strength parameters of lime-improved loess increases first and then decreases with the increase of lime contents. The cohesive force and internal friction angle reach the maximum when the lime content is about 8%. The incorporation of lime gradually increases the cements between and on the surface of the skeleton particles. As the pores are filled with cements, the unstable pores gradually decrease, and the integrity is enhanced. But with too large lime content, the excess lime will accumulate between the agglomerates, which will affect the cementation. The reason for the increasing strength of lime-improved loess is that the cementing material generated by the lime hydration reaction enhances the degree of cementation between soil particles, resulting in a larger friction between the particles, a more stable soil structure, and greater soil strength. However, the excessive lime will reduce the cementation between soil particles, thus reducing the shear strength of the improved loess. The research results not only enrich the theoretical research on the strength characteristics and microstructure of loess, but also provide reference for the selection of engineering design parameters of improved loess.
Keywords
loess, quicklime, microstructure, shear strength
DOI
10.3969/j.issn.1001-1986.2021.06.023
Recommended Citation
XIE Xiao, WANG Luyao, DENG Lejuan,
et al.
(2021)
"Study on the microscopic mechanism of the loess improved by quicklime,"
Coal Geology & Exploration: Vol. 49:
Iss.
6, Article 24.
DOI: 10.3969/j.issn.1001-1986.2021.06.023
Available at:
https://cge.researchcommons.org/journal/vol49/iss6/24
Reference
[1] LATIFI N, RASHID A S A, SIDDIQUA S, et al. Strength measurement and textural characteristics of tropical residual soil stabilised with liquid polymer[J]. Measurement, 2016, 91: 46–54.
[2] YANG Aiwu, YAN Shuwang, DU Dongju, et al. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. Rock and Soil Mechanics, 2010, 31(9): 2930–2934. 杨爱武, 闫澍旺, 杜东菊, 等. 碱性环境对固化天津海积软土强度影响的试验研究[J]. 岩土力学, 2010, 31(9): 2930–2934.
[3] DHAR S, HUSSAIN M. The strength and microstructural behavior of lime stabilized subgrade soil in road construction[J]. International Journal of Geotechnical Engineering, 2021, 15(4): 471–483.
[4] WANG Zhangqiong, BAI Junlong, YE Zhangyan. Mechanism of negative effect of excessive lime addition on improvement of fine grained soil by macro-microscopic test[J]. Journal of Wuhan Institute of Technology, 2020, 42(3): 316–320. 王章琼, 白俊龙, 叶张颜. 过量石灰对细粒土改良效果"负效应"机理的宏–细观试验研究[J]. 武汉工程大学学报, 2020, 42(3): 316–320.
[5] ZHANG Yu, HE Hui, ZENG Zhiying, et al. Comparison of strength characteristics of fly ash-lime improved loess and compacted loess[J]. Science Technology and Engineering, 2021, 21(8): 3265–3273. 张玉, 何晖, 曾志英, 等. 粉煤灰–石灰改良黄土与压实黄土强度特性对比分析[J]. 科学技术与工程, 2021, 21(8): 3265–3273.
[6] YANG Aiwu, WANG Tao, XU Zailiang. Experimental study on lime and its additional agent to cure Tianjin marine soft soil[J]. Journal of Engineering Geology, 2015, 23(5): 996–1004. 杨爱武, 王韬, 许再良. 石灰及其外加剂固化天津滨海软土的试验研究[J]. 工程地质学报, 2015, 23(5): 996–1004.
[7] ZHANG Yuchuan, YAO Yongguo, ZHOU Hong. Experimental study of shear strength and permeability of improved loess with long age[J]. Rock and Soil Mechanics, 2017, 38(Sup. 2): 170–176. 张豫川, 姚永国, 周泓. 长龄期改良黄土抗剪强度与渗透性试验研究[J]. 岩土力学, 2017, 38(增刊2): 170–176.
[8] WANG Lifeng, XIE Xirong, WANG Tian. Study on mechanical properties and constitutive model of remolding lime soil[J]. Bulletin of Science and Technology, 2019, 35(11): 187–192. 王立峰, 谢锡荣, 王甜. 石灰改良土的力学特性及本构模型研究[J]. 科技通报, 2019, 35(11): 187–192.
[9] OSULA D O A. A comparative evaluation of cement and lime modification of laterite[J]. Engineering Geology, 1996, 42(1): 71–81.
[10] YANG Guangqing, GUAN Zhenxiang. Experimental study on improved soil for high-speed railway subgrade[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 682–685. 杨广庆, 管振祥. 高速铁路路基改良填料的试验研究[J]. 岩土工程学报, 2001, 23(6): 682–685.
[11] CUI Zhendong, JIA Yajie. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107–116.
[12] LUO Hao, WU Faquan, CHANG Jinyuan, et al. Pore characteristics of Malan Loess: A case study of Zhaojia'an area loess[J/OL]. Journal of Engineering Geology, 2021: 1–7[2021-10-22]. https://doi.org/10.13544/j.cnki.jeg.2014-0392 罗浩, 伍法权, 常金源, 等. 马兰黄土孔隙结构特征: 以赵家岸地区黄土为例[J/OL]. 工程地质学报, 2021: 1–7[1-10-22]. https://doi.org/10.13544/j.cnki.jeg.2014-0392
[13] Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration. GB/T 50123—2019 Standard for geotechnical testing method[S]. Beijing: China Planning Press, 2019. 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
[14] TAN Yunzhi, YU Bo, LIU Xiaoling, et al. Pore size evolution of compacted laterite under desiccation shrinkage process effects[J]. Rock and Soil Mechanics, 2015, 36(2): 369–375. 谈云志, 喻波, 刘晓玲, 等. 压实红黏土失水收缩过程的孔隙演化规律[J]. 岩土力学, 2015, 36(2): 369–375.
[15] JING Yanlin, WANG Hao, TAO Chunliang, et al. Experimental study on contact angle and pore characteristics of unsaturated loess[J]. Coal Geology & Exploration, 2019, 47(5): 157–162. 井彦林, 王昊, 陶春亮, 等. 非饱和黄土的接触角与孔隙特征试验[J]. 煤田地质与勘探, 2019, 47(5): 157–162.
[16] WAI N C W, HAMED S, BELAL H S K, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2015, 53(8): 1258–1269.
[17] MA Fuli, BAI Xiaohong, WANG Mei. Quantitative analysis of microstructure and collapsibility of loess[C]//First Annual Conference on Civil Architecture in Midwestern China. Xuzhou: China University of Mining and Technology, 2011: 402–409. 马富丽, 白晓红, 王梅. 黄土微观结构与湿陷性的定量分析[C]//首届中国中西部地区土木建筑学术年会论文集: 建设工程安全理论与应用. 徐州: 中国矿业大学出版社, 2011: 402–409.
[18] LIU Yu, MENG Lingxian. The mathematical description and analysis on the characteristics of pore structure of porous calcium oxide[J]. Proceedings of the CSEE, 2002, 22(7): 145–149. 刘煜, 孟令县. 多孔氧化钙孔结构特征的数学描述与分析[J]. 中国电机工程学报, 2002, 22(7): 145–149.
[19] WANG Shuyun, LU Xiaobing, SHI Zhongmin. Effects of grain size distribution and structure on mechanical behavior of silty sands[J]. Rock and Soil Mechanics, 2005, 26(7): 1029–1032. 王淑云, 鲁晓兵, 时忠民. 颗粒级配和结构对粉砂力学性质的影响[J]. 岩土力学, 2005, 26(7): 1029–1032.
[20] FANG Yingguang. Experimental investigation on the size effect of soil mechanic characteristics by tri-axial shear test[J]. Journal of Hydraulic Engineering, 2014, 45(6): 742–748. 房营光. 土体力学特性尺度效应的三轴抗剪试验分析[J]. 水利学报, 2014, 45(6): 742–748.
[21] LIANG Jianxun. Experiment and research on the influence of mineral composition and particle size on soil mechanical properties[D]. Guangzhou: South China University of Technology, 2020. 梁建勋. 矿物成分及粒径对土力学特性影响的试验与研究[D]. 广州: 华南理工大学, 2020.
[22] SU Huazhong, HE Faguo, DENG Jin, et al. Relationship between microscopic parameters and shear strength c, φ of loess in Lanzhou new district[J]. China Earthquake Engineering Journal, 2020, 42(2): 521–528. 粟华忠, 和法国, 邓津, 等. 兰州新区黄土微观参数与剪切强度c、φ关联拟合分析[J]. 地震工程学报, 2020, 42(2): 521–528.
[23] XU Shi, YANG Youhai, GENG Xuan, et al. Experimental study on strength property of lime improved loess[J]. Journal of Lanzhou Jiaotong University(Natural Sciences), 2006, 25(6): 97–100. 徐实, 杨有海, 耿煊, 等. 石灰改性黄土的强度特性试验研究[J]. 兰州交通大学学报(自然科学版), 2006, 25(6): 97–100.
[24] WANG Zhangqiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modified red sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416–421. 王章琼, 高云, 沈雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416–421.
[25] ZHU Yanbo, LI Hongfei, JU Zhitong, et al. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. Coal Geology & Exploration, 2021, 49(4): 221–233. 祝艳波, 李红飞, 巨之通, 等. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探, 2021, 49(4): 221–233.
[26] TAN Yunzhi, ZHAN Shaohu, HU Yan, et al. Behavior of lime-laterite interaction and anti-erosion mechanism of Metakaolin[J]. Rock and Soil Mechanics, 2021, 42(1): 104–112. 谈云志, 占少虎, 胡焱, 等. 石灰–红黏土互损行为与偏高岭土减损机制[J]. 岩土力学, 2021, 42(1): 104–112.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons