Coal Geology & Exploration
Abstract
Stratified pumping test is a key technique for hydrogeological exploration. To solve the problems of low efficiency and poor reliability and controllability of the traditional water-sealing methods outside casing for stratified pumping, a water-swelling rubber was developed based on high water absorption of the sodium polyacrylate resin, and a new approach based on water-swelling rubber was proposed and optimized by the response surface methodology in this paper. With the water swelling ratio of the rubber as response index, a surrogate model was constructed by the Box-Behnken experimental design to study the influence of different process parameters, working condition parameters, and their interaction on the water-swelling performance. Furthermore, the preparation process of water-swelling rubber was optimized and its working condition was predicted. Optimization results indicate that the optimum combination of working conditions and preparation process parameters of water-swelling rubber includes aqueous solution at pH 7.0, water absorption time of 136 h, sodium polyacrylate 61 phr, and modified aramid short fiber 4.5 phr. Finally, the water-sealing device outside casing was developed, and the feasibility of the proposed method was verified through experiments, which has engineering value for the exploration and utilization of groundwater resources.
Keywords
stratified pumping, water sealing outside casing, water-swelling rubber, water swelling ratio, response surface methodology, surrogate model
DOI
10.3969/j.issn.1001-1986.2021.06.018
Recommended Citation
ZHENG Xianghua, YUAN Wei, LUO Yunxiang,
et al.
(2021)
"New method and optimization research on water sealing outside casing based on water-swelling rubber for stratified pumping,"
Coal Geology & Exploration: Vol. 49:
Iss.
6, Article 19.
DOI: 10.3969/j.issn.1001-1986.2021.06.018
Available at:
https://cge.researchcommons.org/journal/vol49/iss6/19
Reference
[1] LI Haixue, CHENG Xuxue, HAN Shuangbao, et al. Application of stratified pumping test in hydrogeological exploration of lager thickness aquifers[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(5): 174–181. 李海学, 程旭学, 韩双宝, 等. 分层抽水在大厚度含水层水文地质勘查中的应用[J]. 南水北调与水利科技(中英文), 2020, 18(5): 174–181.
[2] ZHANG Jianliang. Technical improvement on stratified pumping test[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2009, 36(4): 16–19. 张建良. 关于分层抽水试验的技术改进[J]. 探矿工程(岩土钻掘工程), 2009, 36(4): 16–19.
[3] ZHANG Yunfeng, SUN Zengbing, WANG Binbin, et al. Amelioration of hierarchical method of single borehole pumping test and its application in Zhundong coalfield[J]. Coal Geology & Exploration, 2016, 44(3): 92–96. 张云峰, 孙增兵, 王斌斌, 等. 单孔分层抽水法的改进及在准东煤田的应用[J]. 煤田地质与勘探, 2016, 44(3): 92–96.
[4] WANG Haibo. Study on the pumping test sealing method in the Cenozoic loose aquifer[J]. Ground Water, 2011, 33(6): 5–6. 王海波. 新生界松散含水层抽水试验止水方法的研究—以祁东煤矿南部采区水文地质探查工程为例[J]. 地下水, 2011, 33(6): 5–6.
[5] WAN Yi, HAN Liu. Layered water stop technology and application of one-hole multi-layer pumping test based on rubber plug method[J]. Ground Water, 2017, 39(3): 248–249. 万亿, 韩柳. 基于胶塞法的一孔多层抽水试验分层止水技术及应用[J]. 地下水, 2017, 39(3): 248–249.
[6] LI Xueliang. Construction of hydrogeological hole and casing jacking technology for deep coal resources exploration[J]. West-China Exploration Engineering, 2013(7): 42–44. 李学良. 深部煤炭资源勘查水文孔施工和起下套管技术[J]. 西部探矿工程, 2013(7): 42–44.
[7] ZHAO Zongchang, ZOU Haijiang, LI Pengfei. Layered water-stop technology and application in a hole multilayer pumping test[J]. Ground Water, 2016, 38(3): 128–130. 赵宗昌, 邹海江, 李鹏飞. 一孔多层抽水试验分层止水技术及应用[J]. 地下水, 2016, 38(3): 128–130.
[8] HAO Guoli, YU Jiancong, LI Guomin, et al. Development of a new type of intra-tube sealing device for stratified water pumping[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(3): 39–43. 郝国利, 于建丛, 李国民, 等. 新型分层抽水管内止水装置的研制[J]. 探矿工程(岩土钻掘工程), 2017, 44(3): 39–43.
[9] LI Xiaolong, DONG Shuning, LIU Kaide. Research progress of the stratified water stop technology for multilayer aquifer[J]. Safety in Coal Mines, 2020, 51(2): 84–90. 李晓龙, 董书宁, 刘恺德. 多层含水层分层止水技术研究进展[J]. 煤矿安全, 2020, 51(2): 84–90.
[10] ZHAO Dongyang, ZHANG Yong, ZHOU Yao, et al. Research progress on super absorbent water swelling rubber[J]. New Chemical Materials, 2021, 49(7): 233–236. 赵东阳, 张勇, 周尧, 等. 高吸水性遇水膨胀橡胶的研究[J]. 化工新型材料, 2021, 49(7): 233–236.
[11] LI Shuhu, PANG Minglei, JIA Huamin, et al. Analysis methods of radial force on rubber seal ring[J]. China Rubber Industry, 2012, 59(4): 232–236. 李树虎, 庞明磊, 贾华敏, 等. 橡胶密封圈径向力分析方法[J]. 橡胶工业, 2012, 59(4): 232–236.
[12] WU Xi, LYU Zhiping, WEN Weidong, et al. Synthesis of modified water-absorbent resin and properties of its water-swellable rubber[J]. China Rubber Industry, 2015, 62(7): 404–407. 武玺, 吕志平, 温卫东, 等. 改性吸水树脂的合成及相应吸水膨胀橡胶的性能研究[J]. 橡胶工业, 2015, 62(7): 404–407.
[13] LI Guixian, LI Jinshan, WANG Zhenhua, et al. Preparation and property of blended-type water sellable rubber by PAAS/SBR[J]. China Rubber Science and Technology Market, 2011, 9(4): 16–22. 李贵贤, 李锦山, 王振华, 等. PAAS/SBR共混型吸水膨胀橡胶的制备及性能研究[J]. 橡胶科技市场, 2011, 9(4): 16–22.
[14] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. GB/T 18173.3—2014 Polymer water-proof materials-Part 3: Hydrophilic expasion rubber[S]. 2015-07-01. 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 18173.3—2014高分子防水材料第3部分: 遇水膨胀橡胶[S]. 2015-07-01.
[15] MYERS R H. Response surface methodology: Process and product optimization using designed experiments[M]. New York: John Wiley & Sons, 2008.
[16] LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41–45. 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41–45.
[17] PANG Chaoming, HUANG Hong. Optimal design of testing scheme and data analysis[M]. Nanjing: Southeast University Press, 2018. 庞超明, 黄弘. 试验方案优化设计与数据分析[M]. 南京: 东南大学出版社, 2018.
[18] MANJUNATHA S S, MANJAIAH M, BASAVARAJAPPA S. Predictive modelling of dry sliding wear in sealed plasma- sprayed Mo coating using response surface methodology[J]. Tribology Materials Surfaces & Interfaces, 2018, 12(1): 1–8.
[19] REGHIOUA A, BARKAT D, JAWAD A H, et al. Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105166.
[20] SU Xiuxia, BU Haiyan, CUI Ming, et al. Optimization of preparation of bone glue adhesive material modified by SnCl4 using BBD design and response surface[J]. Journal of Shaanxi University of Science & Technology, 2016, 34(2): 81–86. 苏秀霞, 卜海艳, 崔明, 等. BBD设计–效应面法优化SnCl4改性液体骨胶胶粘剂的制备[J]. 陕西科技大学学报, 2016, 34(2): 81–86.
[21] XU Ensong, YANG Jun, FAN Zhiwei, et al. Effect of modified aramid short fiber and sodium polyacrylate on properties of NBR water swelling rubber[J]. China Rubber Industry, 2019, 66(2): 111–115. 徐恩松, 杨隽, 范志玮, 等. 改性芳纶短纤维和聚丙烯酸钠对丁腈橡胶吸水膨胀橡胶性能的影响[J]. 橡胶工业, 2019, 66(2): 111–115.
[22] LI Yang, ZHOU Qin, YU Huanian, et al. Influence of sodium polyacrylate dosage on the performance of sodium polyacrylate/nitrile rubber sulfide[J]. New Chemical Materials, 2019, 47(10): 193–197. 李杨, 周琴, 于华年, 等. 聚丙烯酸钠用量对聚丙烯酸钠/丁腈橡胶硫化胶性能的影响[J]. 化工新型材料, 2019, 47(10): 193–197.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons