•  
  •  
 

Coal Geology & Exploration

Abstract

Gas is not only one of the important disaster-causing factors in coal mines, but also an important clean energy. Understanding the deformation characteristics of coal measures and the occurrence of gas is the basis for coal mine gas disaster prevention and coalbed methane development. Taking the North China coal measures as the research object, taking the tectonic evolution and control as the main line, using the theory of plate tectonics, tectonic evolution and step by step control of gas-occurring structures, the deformation characteristics of the North China coal-measures and the law of coal mine gas occurrence were systematically studied. The research results show that the North China Plate is at the center of the interaction and junction of the three major tectonic domains and controls the formation and evolution of the coal measures. The interaction between the North China Plate and the peripheral plates restricted the formation, occurrence and deformation of the coal-measure strata, controlled the formation and distribution of tectonic coal, thereby controlling the generation, migration and preservation of coal mine gas; The deformation strength of the North China coal measures has a tendency to weaken from the edge of the plate to the interior of the plate, from the compression orogenic belt to the far orogenic belt; The formation and distribution of coal measures are in good agreement with the deformation of coal measures in the process of tectonic evolution. The development degree of tectonic coal also has a tendency to weaken from the edge of the plate to the interior of the plate and from the nearby compression orogenic belt to the far the orogenic belt. The tectonic coal is not developed in the extending tectonic zones, but the large detachment structures formed under the extensional background is easy to form layered tectonic coal; The gas distribution in North China coal mines has obvious regional characteristics, which can be divided into 7 high gas outburst areas and 6 low gas areas, further divided into 15 high (abrupt) gas belts and 13 low gas belts. The research results have important guiding significance for targeted gas control and coalbed methane development.

Keywords

North China coal measures, geological structure, tectonic evolution, tectonic coal, gas occurrence

DOI

10.3969/j.issn.1001-1986.2021.06.015

Reference

[1] HARGRAVES A J, Instantaneous outbursts of coal and gas: A review & discussion[C]//Proc Aus IMM, 1983.

[2] FARMER I W, POOLEY F D. A hypothesis to explain the occurrence of outbursts in coal, based on a study of West Wales outburst coal[J]. International Journal of Rock Mechanics and Mining Sciences, 1967(4): 189–193.

[3] SHEPHERD J, RIXON L K, GRIFFITHS L. Outbursts and geological structures in coal mines: A review[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1981, 18(4): 267–283.

[4] ZHOU Shining, LIN Baiquan. Theory of coal seam gas occurrence and flow[M]. Beijing: China Coal Industry Publishing House, 1999. 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1999.

[5] ZHANG Zimin. Gas Geology[M]. Xuzhou: China University of Mining and Technology Press, 2009. 张子敏. 瓦斯地质学[M]. 徐州: 中国矿业大学出版社, 2009.

[6] ZHANG Zuyin, ZHANG Zimin. 1∶2 million coal seam gas geological map compilation in China[M]. Xi'an: Xi'an Cartographic Publishing House, 1992. 张祖银, 张子敏. 1∶200万中国煤层瓦斯地质图编制[M]. 西安: 西安地图出版社, 1992.

[7] YUAN Chongfu. Structural coal and coal and gas outburst[J]. Coal Science and Technology, 1986, 13(1): 32–33. 袁崇孚. 构造煤和煤与瓦斯突出[J]. 煤炭科学技术, 1986, 13(1): 32–33.

[8] PENG Lishi, CHEN Kaide. Bedding sliding structure and gas outburst mechanism[J]. Journal of Henan Polytechnic University(Natural Science), 1988(3): 156–164. 彭立世, 陈凯德. 顺层滑动构造与瓦斯突出机制[J]. 焦作矿业学院学报(自然科学版), 1988(3): 156–164.

[9] CAO Yunxing, PENG Lishi. The basic types of coal faults and their control on gas outburst zones[J]. Journal of China Coal Society, 1995, 20(4): 413–417. 曹运兴, 彭立世. 顺煤断层的基本类型及其对瓦斯突出带的控制作用[J]. 煤炭学报, 1995, 20(4): 413–417.

[10] KANG Jiwu, YANG Wenchao. Study on the macro-features of tectonic communities in gas outburst coal seam: On the tectonic rebuild of No. 9-10 coal seam in the eastern Pingdingshan mining district, Henan Province[J]. Journal of Basic Science and Engineering, 1995, 3(1): 45–51. 康继武, 杨文朝. 瓦斯突出煤层中构造群落的宏观特征研究: 论平顶山东矿区戊(9–10)煤层的构造重建[J]. 应用基础与工程科学学报, 1995, 3(1): 45–51.

[11] JIANG Bo, QIN Yong. Evolution mechanism of structures of deformed coals and its geological significance[M]. Xuzhou: China University of Mining and Technology Press, 1998. 姜波, 秦勇. 变形煤结构演化机理及其地质意义[M]. 徐州: 中国矿业大学出版社, 1998.

[12] ZHANG Yugui, ZHANG Zimin, CAO Yunxing. Deformed-coal structure and control to coal-gas outburst[J]. Journal of China Coal Society, 2007, 32(3): 281–284. 张玉贵, 张子敏, 曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报, 2007, 32(3): 281–284.

[13] JU Yiwen, WANG Guiliang. Rheology of coal seams and their relation with gas outburst: A case study of the Haizi Coal Mine, Huaibei Coalfield[J]. Geological Review, 2002, 48(1): 96–105. 琚宜文, 王桂梁. 煤层流变及其与煤矿瓦斯突出的关系: 以淮北海孜煤矿为例[J]. 地质论评, 2002, 48(1): 96–105.

[14] HAN Jun, ZHANG Hongwei, ZHANG Putian. Nappe structure's kinetic features and mechanisms of action to coal and gas outburst[J]. Journal of China Coal Society, 2012, 37(2): 247–252. 韩军, 张宏伟, 张普田. 推覆构造的动力学特征及其对瓦斯突出的作用机制[J]. 煤炭学报, 2012, 37(2): 247–252.

[15] GAO Kui, LIU Zegong, LIU Jian, et al. Physical and mechanical characteristics of tectonic soft coal and their effects on coal and gas outburst[J]. China Safety Science Journal, 2013, 23(2): 129–133. 高魁, 刘泽功, 刘健, 等. 构造软煤的物理力学特性及其对煤与瓦斯突出的影响[J]. 中国安全科学学报, 2013, 23(2): 129–133.

[16] YU Bufan. The relationship between coal and gas outburst and ground stress[J]. Industrial Safety and Environmental Protection, 1985(3): 2–6. 于不凡. 煤和瓦斯突出与地应力的关系[J]. 工业安全与防尘, 1985(3): 2–6.

[17] XU Fengyin, ZHU Xingshan, WANG Guiliang, et al. The quantitative research on the paleotectonic stress field and its control to coal and gas outburst[J]. Scientia Geologica Sinica, 1995, 30(1): 71–84. 徐凤银, 朱兴珊, 王桂梁, 等. 芙蓉矿区古构造应力场及其对煤与瓦斯突出控制的定量化研究[J]. 地质科学, 1995, 30(1): 71–84.

[18] ZHANG Hongwei. Application of geo-dynamic division method in prediction of coal and gas outburst region[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 621–624. 张宏伟. 地质动力区划方法在煤与瓦斯突出区域预测中的应用[J]. 岩石力学与工程学报, 2003, 22(4): 621–624.

[19] ZHANG Chunhua, LIU Zegong, LIU Jian, et al. Physical scale modeling of mechanical characteristics of outburst induced by closed geological structure[J]. Journal of China University of Mining & Technology, 2013, 42(4): 554–559. 张春华, 刘泽功, 刘健, 等. 封闭型地质构造诱发煤与瓦斯突出的力学特性模拟试验[J]. 中国矿业大学学报, 2013, 42(4): 554–559.

[20] JIA Tianrang, FENG Zhendong, WEI Guoying, et al. Shear deformation of fold structures in coal measure strata and coal-gas outbursts: Constraint and mechanism[J]. Energy Exploration & Exploitation, 2018, 36(2): 185–203.

[21] YAN Jiangwei, JIA Tianrang, WEI Guoying, et al. In-situ stress partition and its implication on coalbed methane occurrence in the basin-mountain transition zone: A case study of the Pingdingshan coalfield, China[J]. Sādhanā, 2020, 45(23): 2–6.

[22] ZHU Xingshan, XU Fengyin. The controlling effect of tectonic stress field and its evolution on coal and gas outburst[J]. Journal of China Coal Society, 1994, 19(3): 303–314. 朱兴珊, 徐凤银. 论构造应力场及其演化对煤和瓦斯突出的主控作用[J]. 煤炭学报, 1994, 19(3): 303–314.

[23] ZHU Xingshan, XU Fengyin, LI Quanyi. Development characteristics and influencing factors of damaged coal in Nantong mining area[J]. Coal Geology & Exploration, 1996, 24(2): 28–32. 朱兴珊, 徐凤银, 李权一. 南桐矿区破坏煤发育特征及其影响因素[J]. 煤田地质与勘探, 1996, 24(2): 28–32.

[24] ZHANG Zimin, ZHANG Yugui. Investigation into coal-gas outburst occurred in Daping Coalmine, by using theories of gas-geology[J]. Journal of China Coal Society, 2005, 30(2): 137–140. 张子敏, 张玉贵. 大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J]. 煤炭学报, 2005, 30(2): 137–140.

[25] ZHANG Zimin, ZHANG Yugui. Gas geological law and gas prediction[M]. Beijing: China Coal Industry Publishing House, 2005. 张子敏, 张玉贵. 瓦斯地质规律与瓦斯预测[M]. 北京: 煤炭工业出版社, 2005.

[26] ZHANG Zimin, ZHANG Yugui, WEI Xiujun, et al. Compilation of three-level gas geological map of coal mine[M]. Beijing: China Coal Industry Publishing House, 2007. 张子敏, 张玉贵, 卫修君, 等. 编制煤矿三级瓦斯地质图[M]. 北京: 煤炭工业出版社, 2007.

[27] SONG Yan, ZHAO Mengjun, LIU Shaobo, et al. The influence of structural evolution on the enrichment degree of coalbed methane[J]. Chinese Science Bulletin, 2005, 50(Sup. 1): 1–5. 宋岩, 赵孟军, 柳少波, 等. 构造演化对煤层气富集程度的影响[J]. 科学通报, 2005, 50(增刊1): 1–5.

[28] HAN Jun, ZHANG Hongwei, SONG Weihua, et al. Coal and gas outburst mechanism and risk analysis of tectonic concave[J]. Journal of China Coal Society, 2011, 36(Sup. 1): 108–113. 韩军, 张宏伟, 宋卫华, 等. 构造凹地煤与瓦斯突出发生机制及其危险性评估[J]. 煤炭学报, 2011, 36(增刊1): 108–113.

[29] ZHANG Zimin, WU Yin. Chinese coalmine gas geological law and mapping[M]. Xuzhou: China University of Mining and Technology Press, 2014. 张子敏, 吴吟. 中国煤矿瓦斯地质规律及编图[M]. 徐州: 中国矿业大学出版社, 2014.

[30] ZHANG Zimin, WU Yin. Tectonic-level-control rule and area-dividing of coalmine gas occurrence in China[J]. Earth Science Frontiers, 2013, 20(2): 237–245. 张子敏, 吴吟. 中国煤矿瓦斯赋存构造逐级控制规律与分区划分[J]. 地学前缘, 2013, 20(2): 237–245.

[31] LI Sanzhong, SUO Yanhui, DAI Liming. Development of the Bohai Bay Basin and destruction of the North China Craton[J]. Earth Science Frontiers, 2010, 17(4): 64–89. 李三忠, 索艳慧, 戴黎明, 等. 渤海湾盆地形成与华北克拉通破坏[J]. 地学前缘, 2010, 17(4): 64–89.

[32] CAO Daiyong, NING Shuzheng, GUO Aijun, et al. Tectonic framework of coalfields and tectonic control of coalseams in China[M]. Beijing: Science Press, 2018. 曹代勇, 宁树正, 郭爱军, 等. 中国煤田构造格局与构造控煤作用[M]. 北京: 科学出版社, 2018.

[33] JU Yiwen, WEI Mingming, XUE Chuandong. Control of basin-mountain evolution on the occurrence of deep coal and coalbed methane in North China[J]. Journal of China University of Mining & Technology, 2011, 40(3): 390–398. 琚宜文, 卫明明, 薛传东. 华北盆山演化对深部煤与煤层气赋存的制约[J]. 中国矿业大学学报, 2011, 40(3): 390–398.

[34] WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China, 2011, 30(4): 544–552. 王双明. 鄂尔多斯盆地构造演化和控煤构造作用[J]. 地质通报, 2011, 30(4): 544–552.

[35] JU Yiwen, WANG Guiliang, WEI Mingming, et al. North China energy basin and orogenic belt coupled evolution process and its characteristics since Meso-Cenozoic[J]. Coal Geology of China, 2014, 26(8): 15–19. 琚宜文, 王桂粱, 卫明明, 等. 中新生代以来华北能源盆地与造山带耦合演化过程及其特征[J]. 中国煤炭地质, 2014, 26(8): 15–19.

[36] WANG Guiliang, JU Yiwen, ZHENG Menglin, et al. Energy basin structure in North China[M]. Xuzhou: China University of Mining and Technology Press, 2007. 王桂梁, 琚宜文, 郑孟林, 等. 中国北部能源盆地构造[M]. 徐州: 中国矿业大学出版社, 2007.

[37] WANG Tong, XIA Yucheng, WEI Bo, et al. Structural styles and their control effect on Jurassic coalfield in Xinjiang[J]. Journal of China Coal Society, 2017, 42(2): 436–443. 王佟, 夏玉成, 韦博, 等. 新疆侏罗纪煤田构造样式及其控煤效应[J]. 煤炭学报, 2017, 42(2): 436–443.

[38] WANG Liang, ZHENG Siwen, ZHAO Wei, et al. Study on difference and control factors of coal and gas outburst disasters in Huaibei Coalfield[J]. Coal Science and Technology, 2020, 48(10): 75–83. 王亮, 郑思文, 赵伟, 等. 淮北煤田煤与瓦斯突出灾害差异性和控制因素研究[J]. 煤炭科学技术, 2020, 48(10): 75–83.

[39] GUO Deyong, HAN Dexin. Research on the types of geological tectonic controlling coal-gas outbursts[J]. Journal of China Coal Society, 1998, 23(4): 337–341. 郭德勇, 韩德馨. 地质构造控制煤和瓦斯突出作用类型研究[J]. 煤炭学报, 1998, 23(4): 337–341.

[40] TONG Yuming, CHEN Shengzao, WANG Fuquan, et al. China coal-forming regional structure[M]. Beijing: Science Press, 1994. 童玉明, 陈胜早, 王伏泉, 等. 中国成煤大地构造[M]. 北京: 科学出版社, 1994.

[41] CHEN Shanqing. Characteristics of tectonically deformed Permian coal in Hubei, Hunan, Guangdong and Guangxi Provinces and analysis of its origin[J]. Journal of China Coal Society, 1989, 16(4): 2–10. 陈善庆. 鄂、湘、粤、桂二叠纪构造煤特征及成因分析[J]. 煤炭学报, 1989, 16(4): 2–10.

[42] HOU Quanlin, ZHANG Zimin. The study of the concept of "mylon coal"[J]. Journal of Jiaozuo Mining Institute, 1990(2): 21–26. 侯泉林, 张子敏. 关于"糜棱煤"概念之探讨[J]. 焦作矿业学院学报, 1990(2): 21–26.

[43] LI Kang, ZHONG Daben. Microstructures of coal and their relation with gas outbursts: A case study of the Yutianbao Coal Mine, Nantong[J]. Acta Geologica Sinica, 1992, 66(2): 148–157. 李康, 钟大贲. 煤岩的显微构造特征及其与瓦斯突出的关系: 以南桐鱼田堡煤矿为例[J]. 地质学报, 1992, 66(2): 148–157.

[44] CAO Daiyong, ZHANG Shouren, REN Deyi. The influence of structural deformation on coalification: A case study of Carboniferous coal measures in the northern foothills of the Dabie orogenic belt[J]. Geological Review, 2002, 48(3): 313–317. 曹代勇, 张守仁, 任德贻. 构造变形对煤化作用进程的影响: 以大别造山带北麓地区石炭纪含煤岩系为例[J]. 地质论评, 2002, 48(3): 313–317.

[45] JU Yiwen, JIANG Bo, HOU Quanlin, et al. The new structure-genetic classification system in tectonically deformed coals and its geological significance[J]. Journal of China Coal Society, 2004, 29(5): 513–517. 琚宜文, 姜波, 侯泉林, 等. 构造煤结构–成因新分类及其地质意义[J]. 煤炭学报, 2004, 29(5): 513–517.

[46] JU Yiwen, JIANG Bo, WANG Guiliang, et al. Tectonic coal structure and reservoir physical properties[M]. Xuzhou: China University of Mining and Technology Press, 2005. 琚宜文, 姜波, 王桂梁, 等. 构造煤结构及储层物性[M]. 徐州: 中国矿业大学出版社, 2005.

[47] WANG Enying, YI Weixin, LI Yunbo. The distribution and genetic mechanism of tectonic coal in North China plate[M]. Beijing: Science Press, 2015. 王恩营, 易伟欣, 李云波. 华北板块构造煤分布及成因机制[M]. 北京: 科学出版社, 2015.

[48] LI Yunbo, ZHANG Tengfei, SONG Dangyu, et al. Prediction method of methane geological law based on the multifractal singularity theory: An example from the Panyi Coalmine, Huainan coalfield, China[J]. Journal of China Coal Society, 2018, 43(12): 3436–3446. 李云波, 张腾飞, 宋党育, 等. 基于多重分形奇异性理论的瓦斯地质规律预测方法: 以淮南矿区潘一矿为例[J]. 煤炭学报, 2018, 43(12): 3436–3446.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.