•  
  •  
 

Coal Geology & Exploration

Abstract

Seismic physical modeling acts as a bridge between the research on seismic theoretical methods and actual seismic exploration, which is an important means of studying the propagation law of the elastic wave field and verifying the processing and interpretation methods. It plays an important role of theoretical supporting in the field of oil & gas seismic exploration. There is a great difference between coalfield and oil & gas in seismic exploration attributes, and no professional automatic seismic physical modeling system has been built in the field of coal field seismic exploration. Therefore, a large professional 3D seismic physical modeling system for coalfield seismic exploration is designed and developed, which is composed mainly of the motion and control system, guide rail and transmission system, measurement system and acquisition system. In view of the problem of physical modeling acquisition of the system, the high positioning accuracy technology of single coordinate system and the accuracy unification technology of double coordinate system are developed. The spatial positioning accuracy error of the measurement system is not more than 7 μm, and the absolute zero coordinates of the double coordinate system are unified, which exceeds the expected research goals. The functions of the system are verified through the coalfield seismic physical modeling experiment with typical structures.

Keywords

3D seismic physical modeling, high positioning accuracy, zero unification of two coordinate system, coalfield seismic prospecting

DOI

10.3969/j.issn.1001-1986.2021.06.011

Reference

[1] ZHAO Hongru, TANG Wenbang, GUO Tieshuan. Ultrasonic seismic model test technology and application[M]. Beijing: Petroleum Industry Press, 1986. 赵鸿儒, 唐文榜, 郭铁栓. 超声地震模型试验技术及应用[M]. 北京: 石油工业出版社, 1986.

[2] MCDONALD J A, GARDNER G H F, HILTERMAN F J. Seismic studies in physical modeling[M]. Boston: International Human Resources Development Corp., c1983, Boston: Univ ersity of Houston, 1983.

[3] TATHAM R H, GOOLSBEE D V, MASSELL W F, et al. Seismic shear-wave observations in a physical model experiment[J]. Geophysics, 1983, 48(6): 655–795.

[4] ASS' AD J M, TATHAM R H, MCDONALD J A. A physical model study of microcrack-induced anisotropy[J]. Geophysics, 1992, 57(12): 1534–1658.

[5] MOU Yongguang, PEI Zhenglin. Seismic numerical modeling for 3-D complex media[J]. Beijing: Petroleum Industry Press, 2003. 牟永光, 裴正林. 三维复杂介质地震物理模拟[M]. 北京: 石油工业出版社, 2003.

[6] WONG J, HALL K W, GALLANT E V, et al. Seismic physical modelling at the university of Calgary[C]. Houston: SEG Technical Program Expanded Abstracts, 2009.

[7] WANG Guoqing, WEI Jianxin, LIU Weifang, et al. Design of large-scale multi-channel seismic physical modeling system and its implementation[J]. Lithologic Reservoirs, 2016, 28(6): 95–102. 王国庆, 魏建新, 刘伟方, 等. 大型多道地震物理模拟系统设计方案及实现[J]. 岩性油气藏, 2016, 28(6): 95–102.

[8] HU Tao. Research and development of multichannel seismic physical simulation acquisition system[D]. Beijing: China University of Petroleum(Beijing), 2016. 胡涛. 多道地震物理模拟采集系统研制[D]. 北京: 中国石油大学(北京), 2016.

[9] ZHAO Qun. Study of fracture-cave reservoirs from rugged topography with physical modeling technology[D]. Chengdu: Chengdu University of Technology, 2008. 赵群. 面向起伏地表和缝洞储层的物理模拟技术研究[D]. 成都: 成都理工大学, 2008.

[10] ZHAO Hongru, WANG Tienan, TANG Wenbang. The developments of geophysical modeling[J]. Acta Geophysica Sinica, 1994, 37(Sup. 1): 269–276. 赵鸿儒, 王铁男, 唐文榜. 中国地球物理模型试验的发展[J]. 地球物理学报, 1994, 37(增刊1): 269–276.

[11] XUE Jian, TIAN Gang, WANG Zhejiang, et al. 3D seismic modeling experiment system[J]. Journal of Changchun University of Science and Technology, 1998, 28(3): 335–338. 薛建, 田钢, 王者江, 等. 三维地震模型实验系统的研究[J]. 长春科技大学学报, 1998, 28(3): 335–338.

[12] WANG Jiazheng. The development of special purpose channel for simulation test of earthquake physics and its location system[J]. Journal of Tongji University, 1988, 16(1): 127–136. 王嘉政. 地震物理模拟实验专用水槽及其定位系统的研制[J]. 同济大学学报, 1988, 16(1): 127–136.

[13] LIN Weizheng, HONG Yougen, SUN Changjun, et al. Development of ultrasonic transducer for seismic physics simulation experiment[J]. Technical Acoustics, 1987, 6(1): 34–38. 林维正, 洪有根, 孙长俊, 等. 地震物理模拟实验的超声换能器的研制[J]. 声学技术, 1987, 6(1): 34–38.

[14] HAO Shouling, ZHAO Qun. Application and development of seismic physical model technology[J]. Progress in Exploration Geophysics, 2002, 25(2): 34–43. 郝守玲, 赵群. 地震物理模型技术的应用与发展[J]. 勘探地球物理进展, 2002, 25(2): 34–43.

[15] HOUSE L. Imaging and modeling seismic data from a physical model of the SEG/EAGE salt structure[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 1999. 1999: 1017–1020.

[16] PRATT R G. Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3): 888–901.

[17] WEI Jianxin, MOU Yongguang, DI Bangrang. Study of 3-D seismic physical model[J]. Oil Geophysical Prospecting, 2002, 37(6): 556–561. 魏建新, 牟永光, 狄帮让. 三维地震物理模型的研究[J]. 石油地球物理勘探, 2002, 37(6): 556–561.

[18] HAN Liguo, XUE Jian, WANG Zhejiang. The analysis of seismic wavefield characteristics in complicated media based on thin-plate physical modelling[J]. Journal of Jilin University(Earth Science Edition), 2003, 33(2): 222–226. 韩立国, 薛建, 王者江. 基于页面物理模拟的复杂介质地震波场特征分析[J]. 吉林大学学报(地球科学版), 2003, 33(2): 222–226.

[19] EKANEM A M, WEI J, LI X Y, et al. P-wave attenuation anisotropy in fractured media: A seismic physical modelling study[J]. Geophysical Prospecting, 2013, 61(Sup. 1): 420–433.

[20] GAO Feng, WEI Jianxin, DI Bangrang, et al. A method of seismic physical modeling for quantitative simulation of formation attenuation[J]. Chinese Journal of Geophysics, 2018, 61(12): 5019–5033. 高峰, 魏建新, 狄帮让, 等. 地层衰减定量模拟的地震物理模拟方法[J]. 地球物理学报, 2018, 61(12): 5019–5033.

[21] SI Wenpeng, XUE Shigui, MA Lingwei, et al. Physical modeling and analysis of the characteristics of the seismic response of strike-slip faults and the associated fracture-dissolution reservoirs in the Shunbei area[J]. Geophysical Prospecting for Petroleum, 2019, 58(6): 911–919. 司文朋, 薛诗桂, 马灵伟, 等. 顺北走滑断裂–断溶体物理模拟及地震响应特征分析[J]. 石油物探, 2019, 58(6): 911–919.

[22] BLACQUIERE G. 3-D physical modeling for acquisition geometry studies[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 1999. 1999: 665–668.

[23] DI Bangrang, XIONG Jinliang, YUE Ying, et al. Analysis on influence of bin size on resolution of seismic imaging: Study of acquisition parameters based on seismic physical modeling[J]. Oil Geophysical Prospecting, 2006, 41(4): 363–368. 狄帮让, 熊金良, 岳英, 等. 面元大小对地震成像分辨率的影响分析[J]. 石油地球物理勘探, 2006, 41(4): 363–368.

[24] XIONG Jinliang, DI Bangrang, YUE Ying, et al. Analysis of acquisition footprints based on seismic physical simulation[J]. Oil Geophysical Prospecting, 2006, 41(5): 493–497. 熊金良, 狄帮让, 岳英, 等. 基于地震物理模拟的采集脚印分析[J]. 石油地球物理勘探, 2006, 41(5): 493–497.

[25] YU Zhenqing, WANG Guihe, ZHANG Wei. Discuss on the VSP reflection prospection basis and its interpretation in the cyclie sedimentary media with thin layer structure[J]. Acta Geophysica Sinica, 1984, 27(6): 582–594. 于振清, 王贵和, 张威. 薄层状沉积旋迴介质中垂直地震剖面法反射波勘探基础及解释方法的讨论[J]. 地球物理学报, 1984, 27(6): 582–594.

[26] TANG Wenbang. On resolution of a thin seam in reflection seismic exploration[J]. Acta Geophysica Sinica, 1987, 30(6): 641–652. 唐文榜. 地震反射法中薄煤层分辨能力的研究[J]. 地球物理学报, 1987, 30(6): 641–652.

[27] DONG Qicheng, NING Shunian, GAO Wentai, et al. Ultrasonic simulation of seismic waves affected by caved pillar in coalfield[J]. Journal of china coal society, 1993, 18(6): 72–81. 董其成, 宁书年, 高文泰, 等. 煤田陷落柱对地震波影响的超声模拟[J]. 煤炭学报, 1993, 18(6): 72–81.

[28] YANG Shuang'an, CHANG Suoliang. An ultrasonic simulation analysis of coalfield collapse columns[J]. Geophysical & Geochemical Exploration, 2005, 29(4): 355–358. 杨双安, 常锁亮. 煤田陷落柱的超声模拟分析[J]. 物探与化探, 2005, 29(4): 355–358.

[29] HAN Tanghui, DAI Shixin, LI Xiaohua, et al. Seismic physical modeling research on coal measure strata in Huainan[J]. Journal of China Coal Society, 2011, 36(4): 588–592. 韩堂惠, 戴世鑫, 李小华, 等. 淮南煤系地层地震物理模型研究[J]. 煤炭学报, 2011, 36(4): 588–592.

[30] TIAN Baoqing, LIU Shengdong. Analysis on the transmission seismic layer in the mining working face by physical simulation[J]. Journal of University of Chinese Academy of Sciences, 2013, 30(6): 786–792. 田宝卿, 刘盛东. 矿井工作面透射地震层析物理模拟实验研究[J]. 中国科学院大学学报, 2013, 30(6): 786–792.

[31] XUE Shigui, HAO Shouling. Physical simulation for the influence of incident frequency on seismic response characteristic of thin alternating layers in coal measures[J]. Coal Geology & Exploration, 2014, 42(5): 92–95. 薛诗桂, 郝守玲. 入射频率对煤系薄互层地震响应特征影响的物理模拟[J]. 煤田地质与勘探, 2014, 42(5): 92–95.

[32] PI Jiaolong, TENG Jiwen, LIU Youshan. Preliminary study on the numerical-physical simulation of seismic channel waves[J]. Chinese Journal of Geophysics, 2018, 61(6): 2481–2493. 皮娇龙, 滕吉文, 刘有山. 地震槽波的数学–物理模拟初探[J]. 地球物理学报, 2018, 61(6): 2481–2493.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.