Coal Geology & Exploration
Abstract
Based on historical water quality data and sampling test results, using Piper three-line diagram, correlation analysis, hydrogen and oxygen isotope, Gibbs diagram, ion ratio and saturation index, etc., the hydrochemical characteristics and genetic mechanism of the groundwater with high TDS in Xinjulong Coal Mine area were explored. The results show that with the proceeding of mine construction and coal mining, the water chemistry environment in the study area has changed. The water chemistry type is no longer a single SO4-Na type, with SO4·HCO3-Na and SO4-Ca·Mg type appearing in the deep limestone water. The high-TDS groundwater in the study area is mainly caused by poor hydrodynamic conditions in the upper layers, strong high-temperature water-rock action, obvious leaching, evaporation and concentration, and a certain degree of reverse cation substitution and exchange. The dolomite and calcite in the groundwater are in a precipitated state, and gypsum and salt rock are in a dissolved state, which are the main sources of Na+ and SO42- in groundwater. The above conclusions not only provide a basis for studying the composition of mine water, revealing the evolution process and formation mechanism of groundwater pollution and multi-field coupling in coal mining areas, but also lay the foundation for coal mining water hazard prevention and mine water treatment and utilization in coal mining.
Keywords
coal mining area, high salinity, hydrochemical characteristics, hydrochemistry genesis, ion ratio, saturation index
DOI
10.3969/j.issn.1001-1986.2021.05.006
Recommended Citation
ZHANG Yuzhuo, XU Zhimin, ZHANG Li,
et al.
(2021)
"Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine,"
Coal Geology & Exploration: Vol. 49:
Iss.
5, Article 7.
DOI: 10.3969/j.issn.1001-1986.2021.05.006
Available at:
https://cge.researchcommons.org/journal/vol49/iss5/7
Reference
[1] YAN Han. Analysis of the key contents of the 13th Five-Year Plan for the development of the coal industry[J]. Construction Machinery Today, 2017(1): 31-33. 闫晗. 煤炭工业发展"十三五"规划重点内容分析[J]. 今日工程机械, 2017(1): 31-33.
[2] SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316.
[3] LI Dinglong, ZHOU Zhi'an. Hydrogeochemical characteristics of bottom aquifer and its significance of engineering geology in Linhuan mining area[J]. Geology of Anhui, 1993, 3(4): 54-61. 李定龙, 周治安. 临涣矿区底含水文地球化学特征及其工程地质意义[J]. 安徽地质, 1993, 3(4): 54-61.
[4] JIA Xiumei, SUN Jichao, ZHOU Junye, et al. Hydrogeochemistry research about Daliuta mining area of Shenfu coalfield[J]. Acta Geoscientica Sinica, 1998(4): 357. 贾秀梅, 孙继朝, 周骏业, 等. 神府煤田大柳塔矿区水文地球化学研究[J]. 地球学报, 1998(4): 357.
[5] WANG Guangcai, DUAN Qi, BU Changsen, et al. Applications of hydrogeochemical methods to the study of groundwater hazards at the Pingdingshan and Feicheng coal mines, China[J]. Geological Review, 2001, 47(6): 653-657. 王广才, 段琦, 卜昌森, 等. 水文地球化学方法在煤矿水害研究中的某些应用: 以平顶山、肥城矿区研究为例[J]. 地质论评, 2001, 47(6): 653-657.
[6] GUI Herong, CHEN Luwang, PENG Zicheng. The major constituent analysis of trace element for deep-seated karst water in mining area in northern Anhui[J]. Coal Geology & Exploration, 2004, 32(6): 31-34. 桂和荣, 陈陆望, 彭子成. 皖北矿区深层岩溶水微量元素主成分分析[J]. 煤田地质与勘探, 2004, 32(6): 31-34.
[7] XIE Wenping, FENG Xiaoqing, ZHANG Nengqin, et al. Research on geochemical characteristics of rare earth elements in groundwater in North Anhui mining area[J]. Journal of Guangxi University(Natural Science Edition), 2015, 40(6): 1562-1569. 谢文苹, 冯晓青, 张能钦, 等. 皖北矿区地下水稀土元素地球化学特征研究[J]. 广西大学学报(自然科学版), 2015, 40(6): 1562-1569.
[8] WU Yazun, PAN Chunfang, LIN Yun, et al. Hydrogeochemical characteristics and its reverse simulation of Ordovician limestone groundwater in Hebi mining area[J]. Journal of Water Resources and Water Engineering, 2018, 29(4): 25-32. 武亚遵, 潘春芳, 林云, 等. 鹤壁矿区奥陶系灰岩地下水水文地球化学特征及反向模拟[J]. 水资源与水工程学报, 2018, 29(4): 25-32.
[9] FENG Haibo, DONG Shaogang, ZHANG Tao, et al. Evolution mechanism of a groundwater system in the opencast coalmine area in the typical prairie[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 163-172. 冯海波, 董少刚, 张涛, 等. 典型草原露天煤矿区地下水环境演化机理研究[J]. 水文地质工程地质, 2019, 46(1): 163-172.
[10] ZHANG Baoxiang, ZHANG Chao. Progress on hydrogeochemical method applied in groundwater study[J]. Yellow River, 2019, 41(10): 135-142. 张保祥, 张超. 水文地球化学方法在地下水研究中的应用综述[J]. 人民黄河, 2019, 41(10): 135-142.
[11] RAZACK M, DAZY J. Hydrochemical characterization of groundwater mixing in sedimentary and metamorphic reservoirs with combined use of Piper's principle and factor analysis[J]. Journal of Hydrology, 1990, 114(3/4): 371-393.
[12] KARMEGAM U, CHIDAMBARAM S, PRASANNA M V, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model[J]. Chinese Journal of Geochemistry, 2011, 30: 490.
[13] AL-BASSAM A M, KHALIL A R. DurovPwin: A new version to plot the expanded Durov diagram for hydro-chemical data analysis[J]. Computers and Geosciences, 2012, 42: 1-6.
[14] MARANDI A, SHAND P. Groundwater chemistry and the Gibbs Diagram[J]. Applied Geochemistry, 2018, 97: 209-212.
[15] SINGH K P, MALIK A, SINHA S. Water quality assessment and apportionment of pollution sources of Gomti river(India)using multivariate statistical techniques: A case study[J]. Analytica Chimica Acta, 2005, 538(1/2): 355-374.
[16] PARIZI H S, SAMANI N. Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area(Iran) using multivariate statistical techniques[J]. Environmental Earth Sciences, 2013, 69: 1699-1718.
[17] CEHN Meng, WU Yong, GAO Dongdong, et al. Shallow groundwater hydrogeochemical evolution process and controlling factors in plain zone of Guanghan City[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 831-843. 陈盟, 吴勇, 高东东, 等. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
[18] XU Fen, MA Teng, ELLIS A, et al. Biogeochemical processes of chromium stable isotope in groundwater[J]. Earth Science Frontiers, 2012, 19(4): 183-193. 徐芬, 马腾, ELLIS A, 等. 地下水中稳定铬同位素的生物地球化学作用[J]. 地学前缘, 2012, 19(4): 183-193.
[19] MEREDITH K T, HAN L F, HOLLINS S E, et al. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon[J]. Geochimica et Cosmochimica Acta, 2016, 188: 352-367.
[20] LI Qiming, ZHAI Lijuan, FU Yaojun, et al. A study on coal mining aquifer destruction mode in North China typed coalfields[J]. Coal Geology of China, 2012, 24(7): 38-43. 李七明, 翟立娟, 傅耀军, 等. 华北型煤田煤层开采对含水层的破坏模式研究[J]. 中国煤炭地质, 2012, 24(7): 38-43.
[21] GAO Bai, WANG Guangcai, ZHOU Laixun, et al. Advances in the study of hydrogeochemistry of karstic groundwater in coal mines in North China[J]. Hydrogeology Engineering Geology, 2009, 36(3): 59-63. 高柏, 王广才, 周来逊, 等. 华北型煤田岩溶水水文地球化学研究进展[J]. 水文地质工程地质, 2009, 36(3): 59-63.
[22] XIAO Tongqiang. Study on surrounding rock stability and control of deep roadway in thick coal seam under the action of tectonic stress[D]. Xuzhou: China University of Mining and Technology, 2011. 肖同强. 深部构造应力作用下厚煤层巷道围岩稳定与控制研究[D]. 徐州: 中国矿业大学, 2011.
[23] OZYURT N N, LUTZ H O, HUNJAK T, et al. Characterization of the Gacka River basin karst aquifer(Croatia): Hydrochemistry, stable isotopes and tritium-based mean residence times[J]. Science of the Total Environment, 2014, 487: 245-254.
[24] LIU Kai, LIU Yingchao, SUN Ying, et al. Characteristics of deuterium excess parameters of geothermal water in Beijing[J]. Geology in China, 2015, 42(6): 2029-2035. 刘凯, 刘颖超, 孙颖, 等. 北京地区地热水氘过量参数特征分析[J]. 中国地质, 2015, 42(6): 2029-2035.
[25] JIANG Wanjun, ZHAO Dan, WANG Guangcai, et al. Hydro-geochemical characteristics and formation of groundwater in Tu-Ha basin, Xinjiang[J]. Geoscience, 2016, 30(4): 825-833. 蒋万军, 赵丹, 王广才, 等. 新疆吐-哈盆地地下水水文地球化学特征及形成作用[J]. 现代地质, 2016, 30(4): 825-833.
[26] LI Xueli, SUN Zhanxue, LIU Jinhui. Hydrogeochemistry[M]. Beijing: Atomic Energy Press, 1988. 李学礼, 孙占学, 刘金辉. 水文地球化学[M]. 北京: 原子能出版社, 1988.
[27] ZHANG Chenghang, ZHENG Jieming, XU Zhimin, et al. Hydrodynamic conditions analysis of Taiyuan formation limestone aquifer in Shunhe coal mine based on hydrochemical characteristics[J]. Coal Engineering, 2020, 52(6): 126-129. 张成行, 郑洁铭, 徐智敏, 等. 基于水化学特征的顺和煤矿太灰水动力条件分析[J]. 煤炭工程, 2020, 52(6): 126-129.
[28] DING Zhenyu, MA Jinzhu, HE Jianhua. Geochemical evolution of groundwater in the southwest of Tengger desert, NW of China[J]. Arid Land Geography, 2009, 32(6): 948-957. 丁贞玉, 马金珠, 何建华. 腾格里沙漠西南缘地下水水化学形成特征及演化[J]. 干旱区地理, 2009, 32(6): 948-957.
[29] JIA Zhenxing, ZANG Hongfei, ZHENG Xiuqing. The origin of Na+, Cl- and thermal source of karst groundwater in the stagnant area of Liulin spring basin[J]. Carsologica Sinica, 2015, 34(6): 570-576. 贾振兴, 臧红飞, 郑秀清. 柳林泉域滞流区岩溶水的热源及其Na+、Cl-来源探讨[J]. 中国岩溶, 2015, 34(6): 570-576.
[30] SUN Houyun, MAO Qigui, WEI Xiaofeng, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 2018, 45(6): 1128-1141. 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质, 2018, 45(6): 1128-1141.
[31] ZHANG Zeyuan, XU Feng, WANG Shidong, et al. Hydrochemical characteristics and formation mechanism of Ordovician limestone water in Baode coal mine[J]. Coal Geology & Exploration, 2020, 48(5): 81-88. 张泽源, 许峰, 王世东, 等. 保德煤矿奥陶纪灰岩水水化学特征及形成机理[J]. 煤田地质与勘探, 2020, 48(5): 81-88.
[32] LIU Jiangtao, CAI Wutian, CAO Yueting, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe river[J]. Environmental Science, 2018, 39(12): 5428-5439. 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析[J]. 环境科学, 2018, 39(12): 5428-5439.
[33] ZHU Ge, WU Xiong, GE Jianping, et al. Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map(SOM)[J]. Journal of Cleaner Production, 2020, 257: 120664.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons