•  
  •  
 

Coal Geology & Exploration

Abstract

Heavy metal pollution evaluation and its source analysis are essential to mine water reuse and protection of ecological environment in mining areas. The objective of this paper is to study heavy metal pollution characteristics and source of heavy metal in mine water. A coal mine from Inner Mongolia Province was chosen as the study area and 49 water samples including surface water, quaternary groundwater, confined groundwater and mine water were collected. Primarily, we detected the concentrations of Zn, Pb, Fe, Mn, As, Cu, Cd, Cr, Hg and Se of water samples to explore heavy metal pollution characteristics and excessive situation. And then, HPI(Heavy-metal Pollution Index) model was established to evaluate the degree of mine water heavy metal pollution. At last, mathematical statistics, heavy metal concentration box-plot and heavy metal leaching tests of coal/roof were used to analyze heavy metal source. The results show that the concentration of Zn, Pb, Fe, Mn and As exceeded their standard value. And the exceeding rate of Fe and Zn both reach 100% with the highest over-standard rate. Six of the seven water samples HPI value exceed the critical value of 100. It means mine water heavy metal pollution is serious, generally. The pb and As in mine water is mainly from the leakage of oil substances of coal mining and transportation machinery, while Mn is mainly from aquifer Ⅲ, and Fe and Zn from aquifer Ⅲ, and iron and manganese bearing minerals leaching of coal seam. This conclusion will provide a basis for prevention and treatment of heavy metal pollution in mine water.

Keywords

mine water, heavy metal, degree of contamination, source analysis

DOI

10.3969/j.issn.1001-1986.2021.05.005

Reference

[1] WANG C, YANG Z F, ZHONG C, et al. Temporal-spatial variation and source apportionment of soil heavy metals in the representative river-alluviation depositional system[J]. Environmental Pollution, 2016, 216: 18-26.

[2] ZHAO Dongjie, WANG Xueqiu. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the karst area of Yunnan, Guizhou, Guangxi[J]. China Environmental Science, 2020, 40(4): 1609-1619. 赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 2020, 40(4): 1609-1619.

[3] LEUNG C M, JIAO J J. Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong[J]. Water Research, 2006, 40(4): 753-767.

[4] HE Xiaowen, XU Guangquan, WANG Weining. Research on accumulation characteristic of shallow groundwater metal element[J]. Chinese Journal of Environmental Engineering, 2011, 5(2): 322-326. 何晓文, 许光泉, 王伟宁. 浅层地下水重金属元素的富集特征研究[J]. 环境工程学报, 2011, 5(2): 322-326.

[5] WANG Yihan, LIU Yinxu, LIU Haihong, et al. Chemical composition and heavy metal distribution in surface water of typical inland rivers in Qinghai[J]. Chinese Journal of Ecology, 2018, 37(3): 734-742. 王艺涵, 刘胤序, 刘海红, 等. 青海典型内陆河流域地表水化学组成及其重金属分布特征[J]. 生态学杂志, 2018, 37(3): 734-742.

[6] WANG Lei, WANG Wendong, LIU Dong, et al. Risk assessment and source analysis of heavy metals in the river of a typical bay watershed[J]. Environmental Science, 2020, 41(7): 3194-3203. 王磊, 汪文东, 刘懂, 等. 象山港流域入湾河流水体中重金属风险评价及其来源解析[J]. 环境科学, 2020, 41(7): 3194-3203.

[7] CHEN Wenxuan, LI Qian, WANG Zhen, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6): 2822-2833. 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833.

[8] QIAO Shengying, LI Wangcheng, HE Fang. Characteristics and controlling factors of heavy metal contents in urban soils in Zhangzhou City, Fujian Province[J]. Geochimica, 2005, 34(6): 635-642. 乔胜英, 李望成, 何方. 漳州市城市土壤重金属含量特征及控制因素[J]. 地球化学, 2005, 34(6): 635-642.

[9] China National Coal Association. 2019 annual report on the development of coal industry[R]. Beijing: China National Coal Association, 2019. 中国煤炭工业协会. 2019煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2019.

[10] XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960. 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[11] WANG Tiantian. Study on formation mechanism and passive treatment technology of typical heavy metals in mine water[D]. Beijing: China Coal Research Institute, 2020. 王甜甜. 矿井水中典型重金属形成机理与被动处理技术研究[D]. 北京: 煤炭科学研究总院, 2020.

[12] YANG Jian, WANG Hao, WANG Tiantian, et al. Removal law of typical pollution components during underground storage of mine water: Taking Mindong No. 1 Mine Inner Mongolia as an example[J]. Journal of China Coal Society, 2020, 45(8): 2918-2925. 杨建, 王皓, 王甜甜, 等. 矿井水地下储存过程中典型污染组分去除规律: 以内蒙古敏东一矿为例[J]. 煤炭学报, 2020, 45(8): 2918-2925.

[13] LIANG Yaqin, ZHANG Shuping, LI Hui, et al. Progress in development of modified montmorillonite for adsorption of heavy metal ions[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3179-3187. 梁亚琴, 张淑萍, 李慧, 等. 改性蒙脱土去除水中重金属离子研究新进展[J]. 化工进展, 2018, 37(8): 3179-3187.

[14] YU Lu, BAI Guangyu, ZHOU Jianwei, et al. Characteristics of below ground habitat in a coal mine in Hulun Buir and its significance for prairie ecological restoration[J]. Safety and Environmental Engineering, 2019, 26(4): 29-36. 余露, 白光宇, 周建伟, 等. 呼伦贝尔某煤矿区地境结构特征及其对草原生态恢复的意义[J]. 安全与环境工程, 2019, 26(4): 29-36.

[15] ZUO Hang, MA Xiaoling, CHEN Yizhen, et al. Studied on distribution and heavy metal pollution index of heavy metals in water from upper reaches of the Yellow River, China[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 3047-3052. 左航, 马小玲, 陈艺贞, 等. 黄河上游水体中重金属分布特征及重金属污染指数研究(英文)[J]. 光谱学与光谱分析, 2016, 36(9): 3047-3052.

[16] CHENG Peng, LI Xuyong. Heavy metals pollution and related health risk assessment of Yang River: Spatial and temporal variation[J]. Chinese Journal of Environmental Engineering, 2017, 11(8): 4513-4519. 程鹏, 李叙勇. 洋河流域不同时空水体重金属污染及健康风险评价[J]. 环境工程学报, 2017, 11(8): 4513-4519.

[17] YANG Xuefu, GUAN Jianling, DUAN Jinming, et al. Heavy metal pollution and related health risk of Weihe river in Xi'an section[J]. Bulletin of Soil and Water Conservation, 2014, 34(2): 152-156. 杨学福, 关建玲, 段晋明, 等. 渭河西安段水体重金属污染现状及其健康风险评价[J]. 水土保持通报, 2014, 34(2): 152-156.

[18] HU Chunhua, TONG Le, WAN Qiyuan. Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake[J]. Environmental Chemistry, 2013, 32(6): 974-979. 胡春华, 童乐, 万齐远. 环鄱阳湖浅层地下水水化学特征的时空变化[J]. 环境化学, 2013, 32(6): 974-979.

[19] SU Bin. Application of multivariate statistics method into research on spatial distribution law of hydrochemistry in Dusituhe groundwater system in Ordos cretaceous basin[D]. Changchun: Jilin University, 2007. 孙斌. 多元统计方法在鄂尔多斯白垩系盆地都思兔河地下水系统水化学空间分布规律研究中的应用[D]. 长春: 吉林大学, 2007.

[20] ARMAH F A. Relationship between coliform bacteria and water chemistry in groundwater within gold mining environments in ghana[J]. Water Quality Exposure & Health, 2014, 5(4): 183-195.

[21] GUO Qiaoling, XIONG Xinzhi, JIANG Jingrui. Hydro-chemical characteristics of surface and ground water in the Kuye River basin[J]. Environmental Chemistry, 2016, 35(7): 1372-1380. 郭巧玲, 熊新芝, 姜景瑞. 窟野河流域地表水-地下水的水化学特征[J]. 环境化学, 2016, 35(7): 1372-1380.

[22] WANG Tiantian, JIN Dewu, LIU Ji, et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society, 2019, 44(9): 2840-2850. 王甜甜, 靳德武, 刘基, 等. 动态权-集对分析模型在矿井突水水源识别中的应用[J]. 煤炭学报, 2019, 44(9): 2840-2850.

[23] National Development and Reform Commission, PRC. Leaching test methods for coal and coal gangue MT/T 1016—2006[S]. Beijing: China Standards Press, 2006. 中华人民共和国国家发展和改革委员会. 煤和煤矸石浸出试验方法MT/T 1016—2006[S]. 北京: 中国标准出版社, 2006.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.