Coal Geology & Exploration
Abstract
In order to study the influence of the changes of surrounding rock on the reflected wave of coal seam under the condition of thin interbeds, the coal-bearing strata in the λ/4 thin layer range in seismic exploration is taken as the research object, and three types of models of surrounding rock lithology, thickness and structure change are established. By Brekhovskikh equation in the theory of thin-bed reflection coefficient spectrum, the influence of surrounding rock changes on the AVO curve, attributes and gathers of coal seams are calculated and summarized. The research results show that the changes of surrounding rock lithology in the range of λ/4 have a significant impact on the AVO response of the coal seam. The sandstone roof will significantly increase the AVO intercept and gradient properties of the coal seam. The mudstone roof makes the AVO intercept and gradient properties of the coal seam increase; because of the different roof lithology, the corresponding coal seam AVO gather characteristics will also change. The surrounding rock interbed structure and thickness changes in the range of λ/4 will have a certain impact on the coal seam AVO response, but the impact is small. Among them, the changes of the surrounding rock interbed structure will cause changes in the AVO gather characteristics of the coal seam, and the surrounding rock thickness will cause changes in the AVO intercept attribute of the coal seam. The Zoeppritz equation based on the interface type is not suitable for the normalization of the thin interbedded coal-bearing strata. For simulation, the Brekhovskikh forward equation or other simulation methods that are more suitable for thin interlayers should be selected.
Keywords
thin interbed, surrounding rock change, reflection coefficient spectrum, coal seam reflection wave
DOI
10.3969/j.issn.1001-1986.2021.05.024
Recommended Citation
CHANG Suoliang, ZHANG Sheng, LIU Jing,
et al.
(2021)
"Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition,"
Coal Geology & Exploration: Vol. 49:
Iss.
5, Article 25.
DOI: 10.3969/j.issn.1001-1986.2021.05.024
Available at:
https://cge.researchcommons.org/journal/vol49/iss5/25
Reference
[1] KENNETT B L N. Seismic wave propagation in stratified media[J]. Geophysical Journal International, 1986, 86(1): 219-220.
[2] KENNETT B L N. Seismic waves in a stratified half space[J]. Geophysical Journal of the Royal Astronomical Society, 1980, 61(1): 1-10.
[3] SHI Suzhen, GUO Jiacheng, GU Jianying, et al. Application of tectonic coal prediction by AVO attributes under tuning effect[J]. Coal Geology & Exploration, 2018, 46(3): 133-138. 师素珍, 郭家成, 谷剑英, 等. 调谐效应影响下的AVO属性在构造煤预测中的应用[J]. 煤田地质与勘探, 2018, 46(3): 133-138.
[4] YANG Chun, WANG Yun, WANG Yanghua. Reflection and transmission coefficients of a thin bed[J]. Geophysics, 2016, 81(5): N31-N39.
[5] YANG Zhen, LU Jun, MENG Xinghun, et al. PP-and PS-wave AVA response characteristics for thin coal seam[J]. Journal of China Coal Society, 2015, 40(6): 1435-1441. 杨震, 芦俊, 孟星浑, 等. 薄煤层PP波与PS波AVA地震响应特征[J]. 煤炭学报, 2015, 40(6): 1435-1441.
[6] ZHANG Tieqiang, SUN Pengyuan, QIAN Zhongping, et al. AVO analysis on thin coalbed[J]. Oil Geophysical Prospecting, 2013, 48(4): 597-603. 张铁强, 孙鹏远, 钱忠平, 等. 薄煤层AVO响应特征分析[J]. 石油地球物理勘探, 2013, 48(4): 597-603.
[7] ZOU Guangui, XU Zhiliang, PENG Suping, et al. Analysis of coal seam thickness and seismic wave amplitude: A wedge model[J]. Journal of Applied Geophysics, 2018, 148: 245-255.
[8] CHEN Tiansheng, LIU Yang. Multi-component AVO response of thin beds based on reflectance spectrum theory[J]. Applied Geophysics, 2006, 3(1): 27-36.
[9] PAN Wenyong, INNANEN K A. AVO/AVF analysis of thin beds in elastic media[J]. SEG Technical Program Expanded Abstracts, 2013: 373-377.
[10] CAI Xiling, DIAO Wenchuan, ZHOU Xingyuan, et al. Attribute features of reflection on non-zero offsets in thin layers[J]. Oil Geophysical Prospecting, 2007, 42(3): 277-282. 蔡希玲, 刁文川, 周兴元, 等. 薄层反射波非零炮检距的属性特征[J]. 石油地球物理勘探, 2007, 42(3): 277-282.
[11] AN Ying, LU Jun, YANG Chun. Multi-wave AVO seismic response of coal bearing strata[J]. Journal of China Coal Society, 2018, 43(3): 793-800. 安莹, 芦俊, 杨春. 含煤地层多波AVO地震响应[J]. 煤炭学报, 2018, 43(3): 793-800.
[12] WANG Zengyu, YANG Deyi, CAO Zhiyong, et al. Analysis on the influence of tectonic coal and parting on AVO forward modeling of coal seam[J]. Progress in Geophysics, 2018, 33(2): 754-759. 王增玉, 杨德义, 曹志勇, 等. 构造煤及夹矸对煤层AVO正演模拟结果影响分析[J]. 地球物理学进展, 2018, 33(2): 754-759.
[13] LIU Yinbin, SCHMITT D R. Amplitude and AVO responses of a single thin bed[J]. Geophysics, 2003, 68(4): 1126-1422.
[14] SWAN H. Amplitude-versus-offset measurement errors in a finely layered medium[J]. Geophysics, 1991, 56(1): 9-159.
[15] ZHAO Chenguang. The analysis of seismic reflection from thin interbedding[J]. Oil Geophysical Prospeting, 1986, 21(1): 32-46. 赵晨光. 薄互层地震反射波的特征分析[J]. 石油地球物理勘探, 1986, 21(1): 32-46.
[16] BACKUS G E. Long-wave elastic anisotropy produced by horizontal layering[J]. Journal of Geophysical Research, 1962, 67(11): 4427-4440.
[17] WU Feiyong, MA Peiyuan, HUANG Mingliang. Thin reservoir AVO analysis of spectral reflection coefficient[J]. Progress in Geophysics, 2010, 25(1): 71-75. 吴飞勇, 马培元, 黄明亮. 薄(互)储层的反射系数谱AVO分析[J]. 地球物理学进展, 2010, 25(1): 71-75.
[18] POSTMA G W. Wave propagation in a stratified medium[J]. Geophysics, 1955, 20(4): 745-961.
[19] SAYERS C. Long-wave seismic anisotropy of heterogeneous reservoirs[J]. Geophysical Journal International, 1998, 132(3): 667-673.
[20] SIDLER R, HOLLIGER K. Seismic reflectivity of the sediment-covered seafloor: Effects of velocity gradients and fine-scale layering[J]. Geophysical Journal International, 2010, 181(1): 521-531.
[21] WANG Enhua, HE Zhenhua, LI Qingzhong. Reflectance spectrum theory and model computation based on thin beds[J]. Journal of Chengdu University of Technology, 2001, 28(1): 70-74. 汪恩华, 贺振华, 李庆忠. 基于薄层的反射系数谱理论与模型正演[J]. 成都理工学院学报, 2001, 28(1): 70-74.
[22] LI Xueying, CHEN Shumin, WANG Jianmin, et al. Forward modeling studies on the time-frequency characteristics of thin layers[J]. Chinese Journal of Geophysics(in Chinese), 2012, 55(10): 3410-3419. 李雪英, 陈树民, 王建民, 等. 薄层时频特征的正演模拟[J]. 地球物理学报, 2012, 55(10): 3410-3419.
[23] XU Guoming, LI Yue, NI Sidao, et al. Research on equivalent azimuthal isotropy of thin interbed medium[J]. Oil Geophysical Prospecting, 1996, 31(6): 792-805. 徐果明, 李跃, 倪四道, 等. 薄互层等效横向各向同性的研究[J]. 石油地球物理勘探, 1996, 31(6): 792-805.
[24] ZHANG Sheng, HUANG Handong, ZHU Baoheng, et al. Seismic facies-controlled prestack simultaneous inversion of elastic and petrophysical parameters for favourable reservoir prediction[J]. Exploration Geophysics, 2017, 49(5): 655-668.
[25] ZHANG Sheng, HUANG Handong, LUO Yaneng. Study on qp-wave elastic impedance characteristic in fractured equivalent TTI media[C]//79th EAGE Conference & Exhibition 2017. Pairs, France, June 12-15, 2017.
[26] ZHANG Sheng, HUANG Handong, DONG Yinping, et al. Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir[J]. Journal of Natural Gas Science & Engineering, 2017, 45: 415-427.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons