Coal Geology & Exploration
Abstract
The remediation of heavy metal Cd contamination in municipal waste is one of the urgent environmental problems in China. To determine the best Cd pollution remediation technology, this paper investigates the applicability of various cadmium(Cd) remediation techniques in river treatment. These remediation methods are compared and analyzed based on the dredged river sediments after land disposal in a city in East China. Three remediation techniques of stabilization, soil leaching, and phytoremediation, are compared by analyzing the performance of the techniques for Cd-contaminated soil remediation. The experimental results show that the stabilization technique reduced the leaching rate of soil Cd from 33.3% to 14.3%, thus effectively reducing the biological toxicity of environmental Cd, but the total amount of Cd in soil did not decrease. Leaching soil with citric acid and oxalic acid achieved Cd removal rates of 90.1% and 92.4%, respectively. Compared with these two remediation techniques, phytoremediation was more efficient and easier to implement and had less secondary pollution but took a longer time(usually several years). In this study, these three remediation techniques were analyzed and discussed from technical, economic, and environmental safety perspectives by comprehensively considering the current status and future plans of the study site. Soil leaching was found to be the best technique for treating Cd contamination in dredged river sediments after land disposal.
Keywords
sediments, cadmium contamination, stabilization for soil remediation, soil leaching, phytoremediation
DOI
10.3969/j.issn.1001-1986.2021.05.022
Recommended Citation
Z.
(2021)
"Remediation techniques for cadmium-contaminated dredged river sediments after land disposal,"
Coal Geology & Exploration: Vol. 49:
Iss.
5, Article 23.
DOI: 10.3969/j.issn.1001-1986.2021.05.022
Available at:
https://cge.researchcommons.org/journal/vol49/iss5/23
Reference
[1] CAO Liya. An in-situ remediation technology for heavy-metal-contaminated river sediments[J]. Shanghai Land & Resources, 2018, 39(4): 44-47. 曹丽亚. 河道底泥重金属污染的原位修复方法综述[J]. 上海国土资源, 2018, 39(4): 44-47.
[2] YANG Tao, CHEN Xinyue, LIU Xu, et al. Environmental geochemical characteristics of cadmium of soil and coal gangue in mining-induced subsidence area of Panji mine in Huainan[J]. Coal Geology & Exploration, 2018, 46(1): 1-5. 杨涛, 陈欣悦, 刘旭, 等. 淮南潘集采煤沉陷区土壤及煤矸石镉环境地球化学特征[J]. 煤田地质与勘探, 2018, 46(1): 1-5.
[3] WANG Ziguan, ZHAO Dan, WANG Ruixue. Sustainable management and reuse of brownfield in China's mining areas[J]. Coal Geology & Exploration, 2017, 45(5): 127-134. 王滋贯, 赵丹, 王瑞雪. 我国矿区棕地综合治理及再利用[J]. 煤田地质与勘探, 2017, 45(5): 127-134.
[4] TIAN Haixia, KONG Long, MEGHARAJ M, et al. Contribution of attendant anions on cadmium toxicity to soil enzymes[J]. Chemosphere, 2017, 187: 19-26.
[5] TAN Xiangping, WANG Ziquan, LU Guannan, et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials, 2017, 329: 299-309.
[6] AAMER M, MUHAMMAD U H, LI Z, et al. Foliar application of glycinebetaine(GB) alleviates the cadmium(Cd) toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system[J]. Applied Ecology and Environmental Research, 2018, 16(6): 7575-7583.
[7] TOTH T, ZSIROS O, KIS M, et al. Cadmium exerts its toxic effects on photosynthesis via a cascade mechanism in the cyanobacterium, Synechocystis PCC6803[J]. Plant Cell and Environment, 2012, 35(12): 2075-2086.
[8] WANG Yuhao. Characteristics of cadmium migration in the reclaimed soil filled with the coal gangue from the Xinzhuangzi mine in Huainan[J]. Coal Geology & Exploration, 2018, 46(1): 135-138. 王禺昊. 淮南新庄孜煤矸石充填复垦土壤中镉的迁移特征[J]. 煤田地质与勘探, 2018, 46(1): 135-138.
[9] SONG Wen'en, CHEN Shibao, LIU Jifang, et al. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution[J]. Journal of Integrative Agriculture, 2015, 14(9): 1845-1854.
[10] VARALAKSHMI L R, GANESHAMURTHY A N. Phytotoxicity of cadmium in radish and its effects on growth, yield, and cadmium uptake[J]. Communications in Soil Science and Plant Analysis, 2013, 44(9): 1444-1456.
[11] REN Yongle, DONG Shaochun, YAO Suping. Spatial distribution characteristics of heavy metals in Huainan subsidence pond[J]. Coal Geology & Exploration, 2018, 46(1): 125-134. 任永乐, 董少春, 姚素平. 淮南塌陷塘重金属空间分布特征研究[J]. 煤田地质与勘探, 2018, 46(1): 125-134.
[12] CHEN Aikui, WANG Maoyi, LIU Xiaohai, et al. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms[J]. Ecological Science, 2013, 32(4): 514-522. 陈爱葵, 王茂意, 刘晓海, 等. 水稻对重金属镉的吸收及耐性机理研究进展[J]. 生态科学, 2013, 32(4): 514-522.
[13] ROY M, MCDONALD L M. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils[J]. Land Degradation & Development, 2015, 26(8): 785-792.
[14] KUPERMAN R G, CARREIRO M M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil Biology & Biochemistry, 1997, 29(2): 179-190.
[15] LI Shilong, QIU Feng, JIANG Chunlu, et al. Differences of soil cadmium in mining subsidence area between Guqiao and Xinzhuangzi in Huainan[J]. Coal Geology & Exploration, 2018, 46(1): 6-10. 李世龙, 邱峰, 姜春露, 等. 淮南顾桥与新庄孜采煤沉陷区土壤镉的差异性研究[J]. 煤田地质与勘探, 2018, 46(1): 6-10.
[16] FU Xiaoli, ZENG Desheng. Research development of remediation technology of polluted soil in China[J]. Tropical Agricultural Engineering, 2020, 46(6): 66-68. 傅小丽, 曾德升. 我国土壤污染修复治理技术研究进展[J]. 热带农业工程, 2020, 44(6): 66-68.
[17] NAIDU R, HARTER R D. Effect of different organic ligands on cadmium sorption by and extractability from soils[J]. Soil Science Society of America Journal, 1998, 62: 644-650.
[18] APPEL C, MA L. Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils[J]. Journal Environmental Quality, 2002, 3l: 581-589.
[19] CHEN Chunle, WANG Guo, WANG Junwei. Leaching effect of three composite neutral salt solutions with hydrochloride acid on removing Cd from a Cd-contaminated soil[J]. Journal of Safety and Environment, 2014, 14(5): 205-210. 陈春乐, 王果, 王珺玮. 3种中性盐与HCl复合淋洗剂对Cd污染土壤淋洗效果研究[J]. 安全与环境学报, 2014, 14(5): 205-210.
[20] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268.
[21] YANG Jin, WANG Tingting, GUO Shirong. Study on phytoremediation technology of heavy metals in soil[J]. Inner Mongolia Forestry Investigation and Design, 2018, 41(6): 99-101. 杨瑾, 王婷婷, 郭石荣. 浅谈土壤重金属植物修复技术研究[J]. 内蒙古林业调查设计, 2018, 41(6): 99-101.
[22] LIU Bing, LEI Wenzhang, WANG Jinming, et al. Remediation of heavy metals in petroleum-contaminated soil by electrokinetic method[J]. Environmental Protection of Oil & Gas Fields, 2020, 30(4): 44-48. 刘兵, 雷文章, 王金明, 等. 电动力法修复石油污染土壤重金属研究[J]. 油气田环境保护, 2020, 30(4): 44-48.
[23] SHI Hao, HU Jingmin, CHEN Xin, et al. Research progress on microbial remediation technology of cadmium contaminated mine soil[J]. Conservation and Utilization of Mineral Resources, 2020, 4: 17-21. 石浩, 胡静敏, 陈忻, 等. 矿山土壤镉污染微生物修复技术研究进展[J]. 矿产保护与利用, 2020, 4: 17-21.
[24] FU Chao. Comparison and feasibility analysis of remediation technology for heavy metal cadmium contaminated farmland[J]. Guangdong Chemical Industry, 2020, 47(14): 254-256. 付朝. 重金属镉污染农用地修复技术比选及可行性分析[J]. 广东化工, 2020, 47(14): 254-256.
[25] YANG Yang, ZHAO Meiwei, MIAO Lijun. Determination of the mass fraction of caffeine in tea by high performance liquid chromatography[J]. Modern Salt and Chemical Industry, 2020, 6: 59-61. 杨扬, 赵美薇, 苗利军. 重金属污染土壤的动植物联合修复[J]. 现代盐化工, 2020, 6: 59-61.
[26] AN Maoguo, ZHAO Qingling, TAN Xianfeng, et al. Research on the effect of chemical reduction-stabilization combined remediation of Cr-contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. 安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211.
[27] APPELO C A J, POSTMA D. Geochemistry, groundwater and pollution[M]. Boca Raton: CRC Press, 1993: 519.
[28] CAO Zhenyu. Study on washing remediation of the heavy metal contaminated soil[D]. Beijing: Beijing University of Chemical Technology, 2014. 曹振宇. 重金属污染土壤的淋洗修复研究[D]. 北京: 北京化工大学, 2014.
[29] HU Yuan, LIN Li, HU Yanping, et al. Selecting ferric chloride as an environmental-friendly washing agent for heavy metal cadmium in farmland soil[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(9): 23-28. 胡园, 林莉, 胡艳平, 等. 农田土壤重金属Cd的环保淋洗剂筛选研究[J]. 长江科学院院报, 2019, 36(9): 23-28.
[30] MAKINO T, SUGAHARA K, SAKURAI Y, et al. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals[J]. Environmental Pollution, 2006, 144: 2-10.
[31] MAKINO T, TAKANO H, KAMIYA T, et al. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification[J]. Chemosphere, 2008, 70: 1035-1043.
[32] LIU Siqi. Research on chemical washing of cadmium-contaminated soil[D]. Chongqing: Chongqing University, 2016. 刘思齐. 镉污染土壤化学淋洗研究[D]. 重庆: 重庆大学, 2016.
[33] LI Xiaofei. The effect on remediation of Cr(VI) contaminated soil by modificated montmorillonite[D]. Beijing: Beijing University of Chemical Technology, 2019. 李小飞. 天然矿物材料改性及其修复铬污染土壤研究效果[D]. 北京: 北京化工大学, 2019.
[34] LIU Xing, LIU Xiaowen, WU Yingxin, et al. Review on phytoextraction of heavy metals from contaminated agricultural land[J]. Environmental Pollution Control, 2020, 42(4): 507-513. 刘星, 刘晓文, 吴颖欣, 等. 农用地重金属污染植物提取修复技术研究进展[J]. 环境污染与防治, 2020, 42(4): 507-513.
[35] WEI Shuhe, ZHOU Qixing, WANG Xin, et al. A newly discovered cadmium hyperaccumulative plant Solanum nigrum[J]. Chinese Science Bulletin, 2004, 49(24): 2568-2573. 魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报, 2004, 49(24): 2568-2573.
[36] FU Xiaofeng, LIU Jie, ZHU Wenjie, et al. Field experiment on remediation of cadmium contaminated soil by Celosia argentea L. [J]. Journal of Soil and Water Conservation, 2019, 33(4): 329-334. 傅校锋, 刘杰, 朱文杰, 等. 青葙修复镉污染土壤的田间试验研究[J]. 水土保持学报, 2019, 33(4): 329-334.
[37] SUN Yuebing, ZHOU Qixing, WANG Lin, et al. Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa L. seedings[J]. Environmental Science, 2009, 30(10): 3028-3035. 孙约兵, 周启星, 王林, 等. 三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J]. 环境科学, 2009, 30(10): 3028-3035.
[38] KANG Hong, YANG Zhuo, WANG Hailin, et al. Study on the absorption and accumulation characteristics of Indian Mustrad to heavy metals Pb, Cd and Zn in soil[J]. Journal of Anhui Agri- cultural Sciences, 2010, 38(34): 19378-19381. 康红, 杨卓, 王海林, 等. 印度芥菜对土壤中重金属Pb、Cd、Zn的吸收与累计特性研究[J]. 安徽农业科学, 2010, 38(34): 19378-19381.
[39] ZHANG Yunxia, ZHOU Lang, XIAO Naichuan, et al. Remediation potential of B. pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805-5813. 张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L. )对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805-5813.
[40] HE Yulong, YU Jiang, XIE Shiqian, et al. Enhanced phytoextraction of cadmium contaminated soil by Trifolium Repens with biodegradable chelate GLDA[J]. Environmental Science, 2020, 41(2): 979-985. 贺玉龙, 余江, 谢世前, 等. 可生物降解螯合剂GLDA强化三叶草修复镉污染土壤[J]. 环境科学, 2020, 41(2): 979-985.
[41] BIAN Jianlin, GUO Junmei, WANG Xuedong, et al. Tolerance mechansim and cadmium enrichment abilities in two Brassica napus L. cultivars[J]. Environmental Science, 2020, 41(2): 970-978. 卞建林, 郭俊娒, 王学东, 等. 两种不同镉富集能力油菜品种耐性机质[J]. 环境科学, 2020, 41(2): 970-978.
[42] ZHANG Kai. Study on tolerance mechanism of hypertolerant plant conyza canadensis to cadmium[J]. Fujian: Fujian Agriculture and Forestry University, 2010. 张凯. 镉富集植物小飞蓬对镉的耐性机制研究[D]. 福建: 福建农林大学, 2010.
[43] LIU Qian, LU Yifu. Application of salix aureo-pendula in the remediation of typical cadmium contaminated soil in North China[J]. Chinese Agricultural Science Bulletin, 2020, 36(34): 90-95. 刘倩, 卢一富. 无性系金丝柳在北方典型镉污染土壤修复中的应用[J]. 中国农学通报, 2020, 36(34): 90-95.
[44] ZHANG Jun, YU Pei, YANG Bing, et al. Comparative analysis on cadmium tolerance and antioxidant enzymatic activities of two Viola species[J]. Journal of Anhui Agriculture Science, 2011, 39(29): 18083-18086. 张军, 于沛, 杨兵, 等. 2种堇菜镉耐性和抗氧化酶活性分析[J]. 安徽农业科学, 2011, 39(29): 18083-18086.
[45] ZHU Huangrong, ZHOU Lianghua, YANG Feng, et al. Phytoremediation effects and contrast of Sedum alfredii and Sedum plumbizincicola on Cd/Zn contaminated soil[J]. Ecology and Environmental Sciences, 2019, 28(2): 403-410. 朱凰榕, 周良华, 阳峰, 等. 两种景天修复Cd/Zn污染土壤修复效果的比较[J]. 生态环境学报, 2019, 28(2): 403-410.
[46] NIE Fahui. Cd hyper-accumulator Phytolacca acinosa roxb and Cd-accumulative characteristics[J]. Ecology and Environment, 2006, 15(2): 303-306. 聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境, 2006, 15(2): 303-306.
[47] LU Xiaoyi, HE Chiquan. Tolerance, uptake and accumulation of cadmium by Ricinus communis[J]. Journal of Agro-Environment Science, 2005, 24(4): 674-677. 陆晓怡, 何池全. 蓖麻对重金属Cd的耐性与吸收积累研究[J]. 农业环境科学学报, 2005, 24(4): 674-677.
[48] BAI Hongfeng, LI Xiaoming. Cadmium accumulation in hyper accumulator Cardamine hupingshanensis[J]. Jiangsu Journal of Agriculture Science, 2012, 28(1): 76-79. 白宏锋, 李晓明. 超积累植物壶瓶碎米荠的镉富集[J]. 江苏农业学报, 2012, 28(1): 76-79.
[49] WEI Shuhe. Identification of heavy metal hyperaccumulators and relevant processes of contaminated soil phytoremediation[J]. Shenyang: Chinese Academy of Sciences, 2004. 魏树和. 超积累植物筛选及污染土壤植物修复过程研究[D]. 沈阳: 中国科学院, 2004.
[50] CHEN Yakui, GE Dengwen, LU Diannan. Phytoremediation for soil contaminated cadmium[J]. Environmental Ecology, 2020, 2(9): 92-95. 陈亚奎, 葛登文, 卢滇楠. 镉污染土壤的植物修复技术[J]. 环境生态学, 2020, 2(9): 92-95.
[51] ZHENG Xueling, ZHU Kun. The application of chelating agents in the phytoremediation of heavy metal contaminated soils[J]. Environmental Science and Management, 2009, 34(8): 106-109. 郑雪玲, 朱琨. 螯合剂在植物修复重金属污染土壤中的应用[J]. 环境科学与管理, 2009, 34(8): 106-109.
[52] WANG Donghui, LI Guanghui, QIN Shiqiang, et al. Remediation effect of chemical leaching on Cr(VI)-contaminated fine soil and its economic cost[J]. Chinese Journal of Ecology, 2020, 39(7): 2309-2315. 王东辉, 李广辉, 秦仕强, 等. Cr(VI)污染细粒土壤化学淋洗修复效果与经济成本分析[J]. 生态学杂志, 2020, 39(7): 2309-2315.
[53] XIE Yunhe, JI Xionghui, WU Jiamei, et al. The "three highs" hyperaccumulators screening and repair cost analysis of cadmium and arsenic contaminate soil[J]. Environmental Science & Technology, 2020, 43(1): 116-121. 谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤"三高"富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(1): 116-121.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons