•  
  •  
 

Coal Geology & Exploration

Abstract

Research status and prospect of fault activation under coal mining conditions

Keywords

fault weak plane, mining conditions, fault activation, rock monitoring technology, deep mining

DOI

10.3969/j.issn.1001-1986.2021.04.008

Reference

[1] MENG Zhaoping, PENG Suping, FENG Yu, et al. Influence of fracture structure plane on underground pressure and roof stability of working face[J]. Coal Geology & Exploration, 2006, 34(3): 24-27. 孟召平, 彭苏萍, 冯玉, 等. 断裂结构面对回采工作面矿压及顶板稳定性的影响[J]. 煤田地质与勘探, 2006, 34(3): 24-27.

[2] WANG Cunwen, JIANG Fuxing, LIU Jinhai. Analysis on control action of geologic structure on rock burst and typical cases[J]. Journal of China Coal Society, 2012, 37(Sup. 2): 263-268. 王存文, 姜福兴, 刘金海. 构造对冲击地压的控制作用及案例分析[J]. 煤炭学报, 2012, 37(增刊2): 263-268.

[3] ZUO Jianping, CHEN Zhonghui, WANG Huaiwen, et al. Experimental investigation on fault activation pattern under deep mining[J]. Journal of China Coal Society, 2009, 34(3): 305-309. 左建平, 陈忠辉, 王怀文, 等. 深部煤矿采动诱发断层活动规律[J]. 煤炭学报, 2009, 34(3): 305-309.

[4] LUO Hao, LI Zhonghua, WANG Aiwen, et al. Study on the evolution law of stress field when approaching fault in deep mining[J]. Journal of China Coal Society, 2014, 39(2): 322-327. 罗浩, 李忠华, 王爱文, 等. 深部开采临近断层应力场演化规律研究[J]. 煤炭学报, 2014, 39(2): 322-327.

[5] LI Liangjie, QIAN Minggao, LI Shugang. Mechanism of water-inrush through fault[J]. Journal of China Coal Society, 1996, 21(2): 119-123. 黎良杰, 钱鸣高, 李树刚. 断层突水机理分析[J]. 煤炭学报, 1996, 21(2): 119-123.

[6] Analysis of "6·9" big rock burst accident in Longjiabao coal mine of Liaoning mining company of Jilin coal group[N]. China Coal News, 2020-06-02(003). 吉煤集团辽矿公司龙家堡煤矿"6·9"较大冲击地压事故剖析[N]. 中国煤炭报, 2020-06-02(003).

[7] Analysis of the "10·25" major water disaster accident in Xigu County of Changzhi Xiangtan Coal Mine, Shanxi Province[N]. China Coal News, 2020-05-16(004). 山西长治襄矿西故县煤业"10·25"较大水害事故剖析[N]. 中国煤炭报, 2020-05-16(004).

[8] A case of "10·26" large roof accident in Shiping No. 1 Coal Mine of Luzhou Guxu Coal Power Co., Ltd., southern Sichuan Coal Industry[N]. China Coal News, 2021-02-09(003). 四川省川南煤业泸州古叙煤电有限公司石屏一矿"10·26"较大顶板事故案例[N]. 中国煤炭报, 2021-02-09(003).

[9] GUO Wenbing, LI Chao. Analysis of the impact of the suffered buildings on the ground due to the mining inducing faulty activation[J]. Journal of Safety and Environment, 2018, 18(1): 56-60. 郭文兵, 李超. 工作面回采诱发多断层活化对地表建筑物的影响分析[J]. 安全与环境学报, 2018, 18(1): 56-60.

[10] LI Huamin, FU Kai. Some major technical problems and countermeasures for deep mining[J]. Journal of Mining and Safety Engineering, 2006, 23(4): 468-471. 李化敏, 付凯. 煤矿深部开采面临的主要技术问题及对策[J]. 采矿与安全工程学报, 2006, 23(4): 468-471.

[11] BRACE W F. Laboratory studies of stick-slip and their application to earthquakes[J]. Tectonophysics, 1972, 14(3/4): 189-200.

[12] BAILEY W R, WALSH J J, MANZOCCHI T. Fault populations, strain distribution and basement fault reactivation in the East Pennines coalfield, UK[J]. Journal of Structural Geology, 2005, 27(5): 913-928.

[13] DONNELLY L J, CULSHAW M G, BELL F G. Longwall mining-induced fault reactivation and delayed subsidence ground movement in British coalfields[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 2008, 41(3): 301-314.

[14] SJÉBERG J, PERMAN F, QUINTEIRO C, et al. Numerical analysis of alternative mining sequences to minimise potential for fault slip rockbursting[J]. Mining Technology, 2012, 121(4): 226-235.

[15] SAINOKI A, MITRI H S. Effect of fault-slip source mechanism on seismic source parameters[J]. Arabian Journal of Geosciences, 2016, 9(1): 1-12.

[16] SHI Zejin, LUO Zhetan, PENG Dajun, et al. Application of catastrophe theory to the analyses of mechanism of faulting movement[J]. Journal of Xi'an College of Geology, 1996, 18(1): 50-55. 施泽进, 罗蛰潭, 彭大钧, 等. 突变理论在断层活动机理分析中的应用[J]. 西安地质学院学报, 1996, 18(1): 50-55.

[17] YU Guangming, XIE Heping, YANG Lun, et al. Numerical simulation of fractal effect induced by activation of fault after coal extraction[J]. Journal of China Coal Society, 1998, 23(4): 396-400. 于广明, 谢和平, 杨伦, 等. 采动断层活化分形界面效应的数值模拟研究[J]. 煤炭学报, 1998, 23(4): 396-400.

[18] LIN Yuandong, TU Min, LIU Wenzhen, et al. Faults activation mechanism based on gradient-dependent plasticity[J]. Journal of China Coal Society, 2012, 37(12): 2060-2064. 林远东, 涂敏, 刘文震, 等. 基于梯度塑性理论的断层活化机理[J]. 煤炭学报, 2012, 37(12): 2060-2064.

[19] ZHANG Wenzhong. Research on the lagging water inrush caused by the hidden fault affected by coal mining on the floor[J]. Mining Safety and Environmental Protection, 2018, 45(6): 83-87. 张文忠. 受采动影响底板隐伏断层滞后突水分析[J]. 矿业安全与环保, 2018, 45(6): 83-87.

[20] WANG Xuebin, PAN Yishan, HAI Long. Instability criterion of fault rockburst based on gradient-dependent plasticity[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 588-591. 王学滨, 潘一山, 海龙. 基于剪切应变梯度塑性理论的断层岩爆失稳判据[J]. 岩石力学与工程学报, 2004, 23(4): 588-591.

[21] XIA Yongxue, WANG Jinhua, MAO Debing. Analysis of fault activation induced rock burst risk based on in-situ stress measurements[J]. Journal of China Coal Society, 2016, 41(12): 3008-3015. 夏永学, 王金华, 毛德兵. 断层活化的地应力判别准则及诱发冲击地压的典型微震特征[J]. 煤炭学报, 2016, 41(12): 3008-3015.

[22] GUO Shousong. Study on the mechanism of fault activation induced by mining near fault zone[J]. Coal Engineering, 2019, 51(7): 93-97. 郭寿松. 临近断层的工作面开采诱发断层活化机理研究[J]. 煤炭工程, 2019, 51(7): 93-97.

[23] YU Qiuge, ZHANG Huaxing, ZHANG Yujun, et al. Analysis of fault activation mechanism and influencing factors caused by mining[J]. Journal of China Coal Society, 2019, 44(Sup. 1): 18-30. 于秋鸽, 张华兴, 张玉军, 等. 采动影响下断层活化机理及影响因素分析[J]. 煤炭学报, 2019, 44(增刊1): 18-30.

[24] CAI Wu, DOU Linming, WANG Guifeng, et al. Mechanism of fault reactivation and its induced coal burst caused by coal mining activities[J]. Journal of Mining and Safety Engineering, 2019, 36(6): 1193-1202. 蔡武, 窦林名, 王桂峰, 等. 煤层采掘活动引起断层活化的力学机制及其诱冲机理[J]. 采矿与安全工程学报, 2019, 36(6): 1193-1202.

[25] CHEN Shaojie, XIA Zhiguo, GUO Weijia, et al. Research status and prospect of mining catastrophic response of rock mass under the influence of fault[J]. Coal Science and Technology, 2018, 46(1): 20-27. 陈绍杰, 夏治国, 郭惟嘉, 等. 断层影响下岩体采动灾变响应研究现状与展望[J]. 煤炭科学技术, 2018, 46(1): 20-27.

[26] WANG Hongwei, SHI Ruiming, DENG Daixin, et al. Characteristic of stress evolution on fault surface and coal bursts mechanism during the extraction of longwall face in Yima mining area, China[J]. Journal of Structural Geology, 2020, 136: 104071.

[27] ZHU Guang'an, DOU Linming, LIU Yang, et al. Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction[J]. Journal of China University of Mining and Technology, 2016, 45(1): 27-33. 朱广安, 窦林名, 刘阳, 等. 采动影响下断层滑移失稳的动力学分析及数值模拟[J]. 中国矿业大学学报, 2016, 45(1): 27-33.

[28] JIANG Jinquan, WU Quanlin, QU Hua. Characteristic of mining stress evolution and activation of the reverse fault below the hard-thick strata[J]. Journal of China Coal Society, 2015, 40(2): 267-277. 蒋金泉, 武泉林, 曲华. 硬厚岩层下逆断层采动应力演化与断层活化特征[J]. 煤炭学报, 2015, 40(2): 267-277.

[29] LI Meiyan, ZHU Feilong. Optimization of mining stress and activation law for different fault drops[J]. Safety in Coal Mines, 2019, 50(4): 218-222. 李美燕, 朱飞龙. 不同断层落差采动应力及活化规律优化研究[J]. 煤矿安全, 2019, 50(4): 218-222.

[30] YANG Jiqiang, ZHANG Zhaoyun, WANG Ke. Activation laws of normal fault induced by edge coal mining in upper wall[J]. Safety in Coal Mines, 2018, 49(12): 204-207. 杨继强, 张照允, 王珂. 正断层上盘边角煤开采诱发断层活化规律[J]. 煤矿安全, 2018, 49(12): 204-207.

[31] DOU Zhongsi, TIAN Nuocheng, WU Jiwen. Numerical simulation study on influence of faults on mining stress[J]. Safety in Coal Mines, 2019, 50(12): 174-178. 窦仲四, 田诺成, 吴基文. 断层对采动应力的影响数值模拟研究[J]. 煤矿安全, 2019, 50(12): 174-178.

[32] JI H G, MA H S, WANG J A, et al. Mining disturbance effect and mining arrangements analysis of near-fault mining in high tectonic stress region[J]. Safety Science, 2012, 50(4): 649-654.

[33] ZHANG Yudong, XU Jinpeng. Numerical simulation study on water conduction caused by fault activation in Geting Mine[J]. Mining Safety and Environmental Protection, 2013, 40(2): 16-19. 张玉东, 许进鹏. 葛亭煤矿断层活化导水数值模拟研究[J]. 矿业安全与环保, 2013, 40(2): 16-19.

[34] CAO Minghui, LIU Fan, WANG Tongxu. Numerical simulation study of fault activation process and coal pillar instability mechanism[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(2): 61-68. 曹明辉, 刘钒, 王同旭. 断层活化过程及煤柱失稳机理的数值模拟研究[J]. 山东科技大学学报(自然科学版), 2020, 39(2): 61-68.

[35] WANG Aiwen, PAN Yishan, LI Zhonghua, et al. Similar experimental study of rockburst induced by mining deep coal seam under fault action[J]. Rock and Soil Mechanics, 2014, 35(9): 2486-2492. 王爱文, 潘一山, 李忠华, 等. 断层作用下深部开采诱发冲击地压相似试验研究[J]. 岩土力学, 2014, 35(9): 2486-2492.

[36] CHANG Xiulin, ZHANG Peisen, YANG Hua, et al. Study on similar simulation test of mining-induced fault activation law[J]. Coal Science and Technology, 2018, 46(Sup. 1): 107-111. 昌修林, 张培森, 阳华, 等. 采动诱发断层活化规律相似模拟试验研究[J]. 煤炭科学技术, 2018, 46(增刊1): 107-111.

[37] PENG Suping, MENG Zhaoping, LI Yulin. Influence of faults on coal roof stability by physical modeling study[J]. Coal Geology & Exploration, 2001, 29(3): 1-4. 彭苏萍, 孟召平, 李玉林. 断层对顶板稳定性影响相似模拟试验研究[J]. 煤田地质与勘探, 2001, 29(3): 1-4.

[38] SHI Benqiang, HOU Zhongjie. Mechanical analysis of fault activation water inrush in over burden rock and its application[J]. Rock and Soil Mechanics, 2011, 32(10): 3053-3057. 师本强, 侯忠杰. 覆岩中断层活化突水的力学分析及其应用[J]. 岩土力学, 2011, 32(10): 3053-3057.

[39] LI Zhihua, DOU Linming, LU Zhenyu, et al. Study of the fault slide destabilization induced by coal mining[J]. Journal of Mining and Safety Engineering, 2010, 27(4): 499-504. 李志华, 窦林名, 陆振裕, 等. 采动诱发断层滑移失稳的研究[J]. 采矿与安全工程学报, 2010, 27(4): 499-504.

[40] WANG Tao, JIANG Yaodong, ZHAO Yixin, et al. Experimental research on fault reactivation and relating coal bumps[J]. Journal of Mining and Safety Engineering, 2014, 31(2): 180-186. 王涛, 姜耀东, 赵毅鑫, 等. 断层活化与煤岩冲击失稳规律的实验研究[J]. 采矿与安全工程学报, 2014, 31(2): 180-186.

[41] ZHANG Xingmin, YU Kejun, XI Jingde, et al. The research and application of microseismic technology in mine fractured and caving zones monitoring[J]. Journal of China Coal Society, 2000, 25(6): 566-570. 张兴民, 于克君, 席京德, 等. 微地震技术在煤矿"两带"监测领域的研究与应用[J]. 煤炭学报, 2000, 25(6): 566-570.

[42] GUO Xiaoqiang, DOU Linming, LU Caiping, et al. Research on the microseismic activity of fault reaction induced by coal mining[J]. Safety in Coal Mines, 2011, 42(1): 26-30. 郭晓强, 窦林名, 陆菜平, 等. 采动诱发断层活化的微震活动规律研究[J]. 煤矿安全, 2011, 42(1): 26-30.

[43] ZHU Sitao, JIANG Fuxing, KOUAME K J A, et al. Fault activation of fully mechanized caving face in extra-thick coal seam of deep shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 50-58. 朱斯陶, 姜福兴, KOUAME K J A, 等. 深井特厚煤层综放工作面断层活化规律研究[J]. 岩石力学与工程学报, 2016, 35(1): 50-58.

[44] ZHAO Yixin, WANG Hao, JIAO Zhenhua, et al. Experimental study of the activities of reverse fault induced by footwall coal mining[J]. Journal of China Coal Society, 2018, 43(4): 914-922. 赵毅鑫, 王浩, 焦振华, 等. 逆断层下盘工作面回采扰动引发断层活化特征的试验研究[J]. 煤炭学报, 2018, 43(4): 914-922.

[45] WANG Hongwei, SHAO Mingming, WANG Gang, et al. Characteristics of stress evolution on the thrust fault plane during the coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2318-2327. 王宏伟, 邵明明, 王刚, 等. 开采扰动下逆冲断层滑动面应力场演化特征[J]. 煤炭学报, 2019, 44(8): 2318-2327.

[46] QIU Liming, SONG Dazhao, LI Zhonghui, et al. Research on AE and EMR response law of the driving face passing through the fault[J]. Safety Science, 2019, 117: 184-193.

[47] LU Jingjin, WANG Bingchun, YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology, 2019, 47(3): 18-26. 鲁晶津, 王冰纯, 颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术, 2019, 47(3): 18-26.

[48] YE Qingshu, LU Jingjin, LI Deshan, et al. Application of resistivity monitoring in water damage control of seam roof[J]. Coal Science and Technology, 2019, 47(Sup. 2): 202-207. 叶庆树, 鲁晶津, 李德山, 等. 视电阻率监测在煤层顶板水害防治的应用[J]. 煤炭科学技术, 2019, 47(增刊2): 202-207.

[49] WU Xinqing, WU Jie, DING Shunhua, et al. Study on the influence of shallow coal seam mining on fault activation[J]. Journal of North China Institute of Science and Technology, 2017, 14(3): 1-8. 吴新庆, 吴杰, 丁顺华, 等. 浅部煤层开采对断层活化影响研究[J]. 华北科技学院学报, 2017, 14(3): 1-8.

[50] LU Jingjin. 3D electrical resistivity inversion and imaging technology for coal mine water-containing/water-conductive structures[J]. Journal of China Coal Society, 2016, 41(3): 687-695. 鲁晶津. 煤矿井下含/导水构造三维电阻率反演成像技术[J]. 煤炭学报, 2016, 41(3): 687-695.

[51] ZHANG Dan, ZHANG Pingsong, SHI Bin, et al. Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 952-957. 张丹, 张平松, 施斌, 等. 采场覆岩变形与破坏的分布式光纤监测与分析[J]. 岩土工程学报, 2015, 37(5): 952-957.

[52] CHAI Jing, LEI Wulin, DU Wengang, et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society, 2020, 45(1): 44-53. 柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(1): 44-53.

[53] ZHANG Pingsong, LU Haifeng, HAN Biwu, et al. Monitoring and analysis of deformation characteristics of fault structure under mining condition[J]. Journal of Mining and Safety Engineering, 2019, 36(2): 351-356. 张平松, 鲁海峰, 韩必武, 等. 采动条件下断层构造的变形特征实测与分析[J]. 采矿与安全工程学报, 2019, 36(2): 351-356.

[54] ZHANG Dingding, LI Shujun, ZHANG Xi, et al. Experimental study on mining fault activation characteristics by a distributed optical fiber system[J]. Journal of Mining and Strata Control Engineering, 2020, 2(1): 013018. 张丁丁, 李淑军, 张曦, 等. 分布式光纤监测的采动断层活化特征实验研究[J]. 采矿与岩层控制工程学报, 2020, 2(1): 013018.

[55] ZHOU Gang, CHENG Weimin, SONG Xianming, et al. Research on water injection test in seam of Yanzhou and Jidong coalfields[J]. Coal Science and Technology, 2006, 34(3): 56-60. 周刚, 程卫民, 宋宪明, 等. 兖州及济东煤田煤层注水试验研究[J]. 煤炭科学技术, 2006, 34(3): 56-60.

[56] WANG Jingming, DONG Shuning, LYU Ling, et al. Mining disturbance on faults in panel and the hydrogeological effect[J]. Journal of China Coal Society, 1997, 22(4): 364-365. 王经明, 董书宁, 吕玲, 等. 采矿对断层的扰动及水文地质效应[J]. 煤炭学报, 1997, 22(4): 361-365.

[57] LI Jianwei. Experimental study on water injection of failure depth of fault floor in thick seam mining of Lijialou coal mine[J]. Coal Science and Technology Magazine, 2019, 40(3): 40-43. 李建伟. 李家楼煤矿厚煤层开采断层底板破坏深度注水试验研究[J]. 煤炭科技, 2019, 40(3): 40-43.

[58] CAO Daiyong, ZHAN Wenfeng, LI Huantong, et al. Tectonic setting and risk zoning of dynamic geological disasters in coal mines in China[J]. Journal of China Coal Society, 2020, 45(7): 2376-2388. 曹代勇, 占文锋, 李焕同, 等. 中国煤矿动力地质灾害的构造背景与风险区带划分[J]. 煤炭学报, 2020, 45(7): 2376-2388.

[59] SONG Zhenqi, HAO Jian, TANG Jianquan, et al. Study on water inrush from fault's prevention and control theory[J]. Journal of China Coal Society, 2013, 38(9): 1511-1515. 宋振骐, 郝建, 汤建泉, 等. 断层突水预测控制理论研究[J]. 煤炭学报, 2013, 38(9): 1511-1515.

[60] LIU Zewei, LIU Qisheng, LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration, 2020, 48(2): 141-146. 刘泽威, 刘其声, 刘洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探, 2020, 48(2): 141-146.

[61] PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism and prevention of rockburst in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851. 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851.

[62] LYU Jinguo, WANG Tao, DING Weibo, et al. Induction mechanisms of coal bumps caused by thrust faults during deep mining[J]. Journal of China Coal Society, 2018, 43(2): 405-416. 吕进国, 王涛, 丁维波, 等. 深部开采逆断层对冲击地压的诱导机制[J]. 煤炭学报, 2018, 43(2): 405-416.

[63] YANG Zhiguo, WANG Enying, LI Zhongzhou. Control effect of fault to seam gas deposit[J]. Coal Science and Technology, 2014, 42(6): 104-106. 杨治国, 王恩营, 李中州. 断层对煤层瓦斯赋存的控制作用[J]. 煤炭科学技术, 2014, 42(6): 104-106.

[64] DOU Liming, HE Xueqiu, REN Ting, et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology[J]. Journal of China University of Mining and Technology, 2018, 47(1): 48-59. 窦林名, 何学秋, REN Ting, 等. 动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J]. 中国矿业大学学报, 2018, 47(1): 48-59.

[65] CHEN Min, ZHANG Qinghua, WANG Qixiang. Effect on scope of coal and gas outburst by fault[J]. Coal Science and Technology, 2014, 42(3): 39-41. 陈敏, 张庆华, 王麒翔. 断层对煤与瓦斯突出范围的影响[J]. 煤炭科学技术, 2014, 42(3): 39-41.

[66] MA Nianjie, FENG Jicheng, LYU Kun, et al. Study on cause classification method and support countermeasures of roof falling in coal drift[J]. Coal Science and Technology, 2015, 43(6): 34-40. 马念杰, 冯吉成, 吕坤, 等. 煤巷冒顶成因分类方法及其支护对策研究[J]. 煤炭科学技术, 2015, 43(6): 34-40.

[67] WEI Qingliang, LI Yanbin, GU Pan, et al. Roof failure mechanism and the control technology of fully mechanized mining face passing through fault[J]. Coal Engineering, 2020, 52(4): 52-57. 韦庆亮, 李彦斌, 谷攀, 等. 综采工作面过断层顶板破坏机理及控制技术[J]. 煤炭工程, 2020, 52(4): 52-57.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.