Coal Geology & Exploration
Abstract
Depth correction technique of electrical marker based on electrical field component of CSAMT
Keywords
Controlled Source Audio-frequency Magnetotellurics(CSAMT), electrical marker layer, electrical field component, depth correction, apparent resistivity differential extremum
DOI
10.3969/j.issn.1001-1986.2021.04.004
Recommended Citation
LIU Zuiliang, ZHANG Fenxuan, ZHANG Jifeng,
et al.
(2021)
"Depth correction technique of electrical marker based on electrical field component of CSAMT,"
Coal Geology & Exploration: Vol. 49:
Iss.
4, Article 5.
DOI: 10.3969/j.issn.1001-1986.2021.04.004
Available at:
https://cge.researchcommons.org/journal/vol49/iss4/5
Reference
[1] GOLDSTEIN M A, STRANGWAY D W. Audio-frequency magnetitellurics with a grounded-electric dipole source[J]. Geophysics, 1975, 40(4): 669–683.
[2] TANG Jingtian, HE Jishan. Controlled-source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005. 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[3] KAUFMAN A A, KELLER G V. Frequency and transient soundings[M]. New York: Elsevier Science Publishing Company, 1983.
[4] SHI Kunfa. Controlled source audio-frequency magnetotelluric theory and application(in Chinese)[M]. Beijing: Science Press, 1999. 石昆法. 可控源音频大地电磁法理论与应用[M]. 北京: 科学出版社, 1999.
[5] AN Zhiguo, DI Qingyun. Application of the CSAMT method for exploring deep coal mines in Fujian Province, southeastern China[J]. Journal of Environmental and Engineering Geophysics, 2010, 15(4): 243–249.
[6] ZHANG Jifeng, LIU Jiren, FENG Bing, et al. Fast forward modeling of the 3D land controlled-source electromagnetic method based on model reduction[J]. Chinese Journal of Geophysics, 2020, 63(9): 3520–3533. 张继锋, 刘寄仁, 冯兵, 等. 三维陆地可控源电磁法有限元模型降阶快速正演[J]. 地球物理学报, 2020, 63(9): 3520–3533.
[7] HE Jishan. Controlled source audio-frequency magnetotellurics method(in Chinese)[M]. Changsha: Central South University Press, 1990. 何继善. 可控源音频大地电磁法[M]. 长沙: 中南大学出版社, 1990.
[8] YAN Shu, XUE Guoqiang, QIU Weizhong, et al. Interpretation of CSAMT single-component data[J]. Chinese Journal of Geophysics, 2017, 60(1): 349–359. 闫述, 薛国强, 邱卫忠, 等. CSAMT单分量数据解释方法[J]. 地球物理学报, 2017, 60(1): 349–359.
[9] HE Jishan. Wide field electromagnetic sounding methods[J]. Journal of Central South University(Science and Technology), 2010, 41(3): 1065–1072. 何继善. 广域电磁测深法研究[J]. 中南大学学报(自然科学版), 2010, 41(3): 1065–1072.
[10] HE Jishan. Wide field electromagnetic methods and electrical method with pseudo-random signal(in Chinese)[M]. Beijing: Higher Education Press, 2010. 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[11] CHEN Weiying, XUE Guoqiang. The analysis and application of the vertical magnetic component in wide field electromagnetic method[J]. Geophysical and Geo-chemical Exploration, 2015, 39(2): 358–361. 陈卫营, 薛国强. 广域电磁法中垂直磁场分量的分析与应用[J]. 物探与化探, 2015, 39(2): 358–361.
[12] WANG Shunguo, XIONG Bin, WANG Youxue, et al. Wave-number domain features of primary field of H-Hz arrangement wide field electromagnetic method[J]. Journal of Guilin University of Technology, 2012, 32(2): 179–183. 王顺国, 熊彬, 王有学, 等. 广域电磁法H–Hz方式波数域的一次场特征[J]. 桂林理工大学学报, 2012, 32(2): 179–183.
[13] QIU Weizhong, YAN Shu, XUE Guoqiang, et al. Action of CSAMT field components in mountainous fine prospecting[J]. Progress in Geophysics, 2011, 26(2): 664–668. 邱卫忠, 闫述, 薛国强, 等. CSAMT的各分量在山地精细勘探中的作用[J]. 地球物理学进展, 2011, 26(2): 664–668.
[14] LI Diquan, XIE Wei, CHENG Dangxing. Three-dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2459–2470. 李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013, 23(9): 2459–2470.
[15] WU Jianping, ZHANG Chao, CHEN Jianping, et al. Three dimensional finite element simulation of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1066–1072. 武建平, 张超, 陈剑平, 等. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066–1072.
[16] HU Tu, LI Diquan. Distinguish ability on thin resistant layered structure of E-Ex mode of wide field electromagnetic sounding method[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(3): 297–303. 胡涂, 李帝铨. E–Ex广域电磁法对低阻薄层分辨能力探讨[J]. 物探化探计算技术, 2014, 36(3): 297–303.
[17] WANG Yongbing, YIN Wenbin, ZHANG Lei. A preliminary exploration of the wide field electromagnetic method in aerogeophysical prospecting[J]. Geophysical and Geochemical Exploration, 2020, 44 (5): 1059–1065. 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059–1065.
[18] WANG Ruo, WANG Miaoyue, DI Qingyun, et al. 3D1C CSAMT modeling using finite element method[J]. Progress in Geophysics, 2014, 29(2): 839–845. 王若, 王妙月, 底青云, 等. CSAMT三维单分量有限元正演[J]. 地球物理学进展, 2014, 29(2): 839–845.
[19] LIU Zuiliang, WANG Heyu, FENG Bing, et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society, 2019, 44(8): 2346–2355. 刘最亮, 王鹤宇, 冯兵, 等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报, 2019, 44(8): 2346–2355.
[20] FU Haitao, LUO Weibin, DING Zhijun, et al. The calculation method of whole zone apparent resistivity of vertical magnetic field on the surface of layered model excited by horizontal electric dipole source[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1309–1319. 伏海涛, 罗维斌, 丁志军, 等. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309–1319.
[21] TONG Tiegang, LIU Chunming, HE Jishan. Numerical simulation and application discussion of the CSAMT full-zone resistivity method[J]. Progress in Geophysics, 2009, 24(5): 1855–1860. 佟铁钢, 刘春明, 何继善. CSAMT全区电阻率法数值模拟及应用探讨[J]. 地球物理学进展, 2009, 24(5): 1855–1860.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons