Coal Geology & Exploration
Abstract
Fault recognition based on principal component analysis and k-nearest neighbor algorithm
Keywords
seismic attributes, principal component analysis(PCA), k-nearest neighbor(kNN) algorithm, fault identification, Yangdong Coal Mine of Fengfeng Mining Area
DOI
10.3969/j.issn.1001-1986.2021.04.003
Recommended Citation
ZOU Guangui, REN Ke, JI Yin,
et al.
(2021)
"Fault recognition based on principal component analysis and k-nearest neighbor algorithm,"
Coal Geology & Exploration: Vol. 49:
Iss.
4, Article 4.
DOI: 10.3969/j.issn.1001-1986.2021.04.003
Available at:
https://cge.researchcommons.org/journal/vol49/iss4/4
Reference
[1] DONG Shouhua, SHI Yading, WANG Yang. Automatic recognition of small fault by BP artificial nervous network from multiple seismic parameters[J]. China University of Mining and Technology, 1997, 26(3): 14-18. 董守华, 石亚丁, 汪洋. 地震多参数BP人工神经网络自动识别小断层[J]. 中国矿业大学学报, 1997, 26(3): 14-18.
[2] BAHORICH M, FARMER S L. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube[J]. AAPG Bulletin, 1995, 14(10): 1566.
[3] ALBINHASSAN N M, MARFURT K. Fault detection using Hough transforms[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2003. 2003: 1719-1721.
[4] PEDERSEN S I, RANDEN T, SONNELAND L, et al. Automatic fault extraction using artificial ants[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2002. 2002: 512-515.
[5] ADMASU F, BACK S, TOENNIES K. Autotracking of faults on 3D seismic data[J]. Geophysics, 2006, 71(6): 49-53.
[6] LU Cai, YUAN Mingkai, WANG Qi, et al. Application of multi-attributes fused volume rendering techniques in 3D seismic interpretation[C]//Society of Exploration Geophysicists. SEG Technical Program Expanded Abstracts 2014. 2014: 1609-1613.
[7] SUN Zhenyu, PENG Suping, ZOU Guangui, Automatic identification of small faults based on SVM and seismic data[J]. Journal of China Coal Society, 2017, 42(11): 2945-2952. 孙振宇, 彭苏萍, 邹冠贵. 基于SVM算法的地震小断层自动识别[J]. 煤炭学报, 2017, 42(11): 2945-2952.
[8] DI Haibin, SHAFIQ A, WANG Zhen, et al. Improving seismic fault detection by super-attribute-based classification[J]. Interpretation, 2019, 7(3): 251-267.
[9] ZOU Guangui, REN Ke, SUN Zhenyu, et al. Fault interpretation using a support vector machine: A study based on 3D seismic mapping of the Zhaozhuang Coal Mine in the Qinshui Basin, China[J]. Journal of Applied Geophysics, 2019, 171: 103870.
[10] BARNES A E. A filter to improve seismic discontinuity data for fault interpretation[J]. Geophysics, 2006, 71(3): 1.
[11] BAVKAR S, SAHARE S. PCA based single channel speech enhancement method for highly noisy environment[C]//2013 International Conference on Advances in Computing, Communications and Informatics(ICACCI). IEEE, 2013: 1103-1107.
[12] IWAI M, KOBAYASHI K. Noise reduction in magnetocardiograph based on time-shift PCA just using measurement data[C]// IEEE. 2018 IEEE International Magnetics Conference(INTER MAG). 2018: 1.
[13] ARAYA M, DAHLKE T, FROGNER C, et al. Automated fault detection without seismic processing[J]. The Leading Edge, 2017, 36(3): 208-214.
[14] JAAFAR H, RAMLI N H, NASIR A S A. An improvement to the k-nearest neighbor classifier for ECG database[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 012046.
[15] AHA W, KIBLER D, ALBERT M. Instance-based learning algorithms[J]. Machine Learning, 1991, 6(1): 37-66.
[16] WOLD S. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1): 37-52.
[17] JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research, 2002, 87(4): 513.
[18] MINCHAI H, ZHENMIN Q. Identification of the pesticide fluorescence spectroscopy based on the PCA and KNN[C]// IEEE. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE). 2010, 3: 184-186.
[19] ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016. 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[20] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
[21] PETERSON L. K-nearest neighbor[J]. Scholarpedia, 2009, 4(2): 1883.
[22] COST S, SALZBERG S. A weighted nearest neighbor algorithm for learning with symbolic features[J]. Machine Learning, 1993, 10(1): 57-78.
[23] II R, FUKUNAGA K. The optimal distance measure for nearest neighbor classification[J]. IEEE Transactions on Information Theory, 1981, 27(5): 622-627.
[24] WRONA T, PAN I, GAWTHORPE R L, et al. Seismic facies analysis using machine learning[J]. Geophysics, 2018, 83(5): 83-95.
[25] ZHANG Zhongheng. Introduction to machine learning: K-nearest neighbors[J]. Annals of Translational Medicine, 2016, 4(11): 218.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons