Coal Geology & Exploration
Abstract
Improvement of shear strength and anti-disintegration performance of compacted loess
Keywords
loess, Nano-SiO2, guar gum, shear strength, disintegration
DOI
10.3969/j.issn.1001-1986.2021.04.027
Recommended Citation
ZHU Yanbo, LI Hongfei, JU Zhitong,
et al.
(2021)
"Improvement of shear strength and anti-disintegration performance of compacted loess,"
Coal Geology & Exploration: Vol. 49:
Iss.
4, Article 29.
DOI: 10.3969/j.issn.1001-1986.2021.04.027
Available at:
https://cge.researchcommons.org/journal/vol49/iss4/29
Reference
[1] LUO Jin, XIANG Wei, WU Yungang, et al. Experimental study on formation of loess vertical joints in northern Shaanxi Province[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(3): 38-41. 骆进, 项伟, 吴云刚, 等. 陕北黄土垂直节理形成机理的试验研究[J]. 长江科学院院报, 2010, 27(3): 38-41.
[2] LI Xi'an, HUANG Runqiu, PENG Jianbing. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup. 1): 3207-3213. 李喜安, 黄润秋, 彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3207-3213.
[3] WANG Ning, MAO Yuncheng, ZHANG Dewen, et al. The influence of freeze-thaw cycles on the slopes of loess road cuts in seasonally frozen soil regions[J]. Highway and Transportation Science and Technology(Applied Technology Edition), 2011, 7(4): 79-84. 王宁, 毛云程, 张得文, 等. 冻融循环对季节冻土区黄土路堑边坡的影响[J]. 公路交通科技(应用技术版), 2011, 7(4): 79-84.
[4] ZHU Caihui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. 朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845-854.
[5] XIA Qiong, YANG Youhai, GENG Xuan. Experimental study on flyash-lime or flyash-cement loess filling[J]. Journal of Lanzhou Jiaotong University, 2008, 27(3): 40-43. 夏琼, 杨有海, 耿煊. 粉煤灰与石灰、水泥改良黄土填料的试验研究[J]. 兰州交通大学学报, 2008, 27(3): 40-43.
[6] HU Zaiqiang, LIANG Zhichao, GUO Jing, et al. Prediction of permeability coefficient of unsaturated lime improved loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup. 2): 26-31. 胡再强, 梁志超, 郭婧, 等. 非饱和石灰改良黄土的渗水系数预测[J]. 岩土工程学报, 2020, 42(增刊2): 26-31.
[7] LIANG Zhichao, HU Zaiqiang, GUO Jing, et al. Study on soil water characteristics and compressive collapsibility of unsaturated lime loess[J]. Journal of Hydroelectric Engineering, 2020, 39(3): 66-75. 梁志超, 胡再强, 郭婧, 等. 非饱和石灰黄土土水特征与压缩湿陷特性研究[J]. 水力发电学报, 2020, 39(3): 66-75.
[8] CHEN Le, LIU Zhibin, ZHOU Shuzhong. Influence of polypropylene fiber-reinforcement on consolidation and compression characteristics of kaolin[J]. Rock and Soil Mechanics, 2015, 36(Sup. 1): 372-376. 陈乐, 刘志彬, 周书中. 聚丙烯纤维加筋对高岭土固结压缩特性影响试验研究[J]. 岩土力学, 2015, 36(增刊1): 372-376.
[9] ZENG Jun, PENG Xuexian, RUAN Bo, et al. Experimental study on unconfined compressive strength of polypropylene fiber reinforced red clay[J]. Journal of Railway Science and Engineering, 2015, 12(3): 545-550. 曾军, 彭学先, 阮波, 等. 聚丙烯纤维红黏土无侧限抗压强度试验研究[J]. 铁道科学与工程学报, 2015, 12(3): 545-550.
[10] DENG Yousheng, WU Peng, ZHAO Minghua, et al. Strength of expansive soil reinforced by polypropylene fiber under optimal water content[J]. Rock and Soil Mechanics, 2017, 38(2): 349-353. 邓友生, 吴鹏, 赵明华, 等. 基于最优含水率的聚丙烯纤维增强膨胀土强度研究[J]. 岩土力学, 2017, 38(2): 349-353.
[11] WANG Jing'e, MI Jiti, ZHENG Jie. Experimental study on the solidification of loess with lignin sand fixation agent[J]. Yellow River, 2010, 32(12): 170-171. 王菁莪, 米吉提, 郑洁. 木质素固沙剂固化黄土试验研究[J]. 人民黄河, 2010, 32(12): 170-171.
[12] HOU Xin, MA Wei, LI Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(Sup. 2): 18-26. 侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(增刊2): 18-26.
[13] WU Jianfeng. Research on the characteristics of lime-improved silt soil under freeze-thaw cycles[J]. Innovation in Science and Technology, 2021(3): 125-126. 伍剑锋. 冻融循环作用下石灰改良粉砂土特性研究[J]. 科学技术创新, 2021(3): 125-126.
[14] LI Guoxun, ZHANG Yanmei, MA Ding, et al. Mechanical properties of nano-silica and lime stabilized silt reinforced by fiber[J]. Journal of Civil and Environmental Engineering(Chinese and English), 2020, 42(2): 37-44. 李国勋, 张艳美, 马丁, 等. 纤维对纳米二氧化硅-石灰改良粉土力学性质的影响[J]. 土木与环境工程学报(中英文), 2020, 42(2): 37-44.
[15] PENG Yu, ZHANG Huyuan, LIN Chengbin, et al. Engineering properties and improvement mechanism of loess soil modified by consolid system[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 762-772. 彭宇, 张虎元, 林澄斌, 等. 抗疏力固化剂改性黄土工程性质及其改性机制[J]. 岩石力学与工程学报, 2017, 36(3): 762-772.
[16] ZHOU Jianji, LIANG Shouyun, ZHANG Fanyu, et al. Experimental study on engineering performances of lime-stabilized loess[J]. Railway Engineering, 2014(9): 105-108. 周建基, 梁收运, 张帆宇, 等. 石灰改良黄土的工程特性试验研究[J]. 铁道建筑, 2014(9): 105-108.
[17] PENG Liyun, WANG Jianye. Experimental study on anti-corrosion of corn straw and its effect in silt improvement[J]. Journal of Engineering Geology, 2017, 25(1): 132-138. 彭丽云, 王剑烨. 玉米秸秆防腐及其粉土加筋效果研究[J]. 工程地质学报, 2017, 25(1): 132-138.
[18] ZHU Min, NI Wankui, LI Xiangning, et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering, 2020, 20(20): 8337-8343. 朱敏, 倪万魁, 李向宁, 等. 黄土掺入聚丙烯纤维后的无侧限抗压强度和变形试验研究[J]. 科学技术与工程, 2020, 20(20): 8337-8343.
[19] AN Ning, YAN Changgen, WANG Yachong, et al. Experimental study on anti-erosion performance of polypropylene fiber reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501-510. 安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510.
[20] LU Hao, YAN Changgen, JIA Zhuolong, et al. Shear strength and disintegration properties of polypropylene fiber reinforced loess[J/OL]. Journal of Traffic and Transportation Engineering: 1-12[2021-06-03]. http://kns.cnki.net/kcms/detail/61.1369.U.20210427.1541.002.html 卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J/OL]. 交通运输工程学报: 1-12[2021-06-03]. http://kns.cnki.net/kcms/detail/61.1369.U.20210427.1541.002.html
[21] KONG Ran, ZHANG Fanyu, WANG Gonghui, et al. Stabilization of loess using Nano-SiO2[J]. Materials, 2018, 11(6): 1014.
[22] TABARSA A, LATIFI N, MEEHAN C L, et al. Laboratory investigation and field evaluation of loess improvement using nanoclay: A sustainable material for construction[J]. Construction and Building Materials, 2018, 158: 454-463.
[23] KONG Ran. Study on mechanical properties and structural characteristics of nano-SiO2 stabilized loess[D]. Gansu: Lanzhou University, 2019. 孔冉. 纳米二氧化硅固化黄土力学性能和结构特征研究[D]. 甘肃: 兰州大学, 2019.
[24] HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. 贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739.
[25] LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2592. 刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582-2592.
[26] LI Wenlong. Experimental study on strength and crack resistance of coal gangue aggregate concrete mixed with glass fiber and fly ash[J]. Building Structure, 2020, 50(13): 49-53. 李文龙. 掺玻璃纤维粉煤灰煤矸石骨料混凝土强度与抗裂性能试验研究[J]. 建筑结构, 2020, 50(13): 49-53.
[27] CHEN Deng, SONG Xuyan, JIANG Zhengping, et al. Effects of combined admixture of straw and fly ash on the properties of concrete[J]. China Concrete and Cement Products, 2020(4): 100-103. 陈登, 宋旭艳, 姜正平, 等. 秸秆与粉煤灰复掺对混凝土性能的影响[J]. 混凝土与水泥制品, 2020(4): 100-103.
[28] CORREIA A, VENDA O P J, CUSTODIO D G. Effect of polypropylene fibers on the compressive and tensile strength of a soft soil, artificially stabilized with binders[J]. Geotextiles & Geomembranes, 2015, 43(2): 97-106. 戴文亭, 司泽华, 王振, 等. 剑麻纤维水泥加固土的路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(2): 589-593.
[29] DAI Wenting, SI Zehua, WANG Zhen, et al. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[30] JIANG Canhui, WU Mingfei, LIU Jin, et al. Experimental study on compressive characteristics of sand reinforced by polymer and sisal fiber[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2021, 38(1): 32-39. 江灿珲, 吴鸣飞, 刘瑾, 等. 高分子聚合物-剑麻纤维复合加固砂土抗压特性试验研究[J]. 河北工程大学学报(自然科学版), 2021, 38(1): 32-39.
[31] ZHU Yanbo, YU Hongming, YANG Yanxia, et al. Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425-432. 祝艳波, 余宏明, 杨艳霞, 等. 红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425-432.
[32] YANG Zhiqiang, GUO Jianyang. The physio-mechanical properties and micro-mechanism in lime-soil system[J]. Rock and Soil Mechanics, 1991, 12(3): 11-23. 杨志强, 郭见扬. 石灰处理土的物理力学性质及其微观机理的研究[J]. 岩土力学, 1991, 12(3): 11-23.
[33] CHENG Peifeng, CHEN Botong. Effect of nano-silica on mechanical properties of fiber reinforced soil[J]. Low Temperature Construction Technology, 2021, 43(2): 43-47. 程培峰, 陈勃同. 纳米二氧化硅对纤维固化土力学性质的影响[J]. 低温建筑技术, 2021, 43(2): 43-47.
[34] ZHANG Yanmei, MA Ding, LI Guoxun, et al. Study on mechanical properties of Nano-SiO2 and lime stabilized silt in the yellow river flood area[J/OL]. Journal of Engineering Geology: 1-7[2021-05-28]. https://doi.org/10.13544/j.cnki.jeg.2019-128 张艳美, 马丁, 李国勋, 等. 纳米SiO2和石灰改良黄泛区粉土的力学特性研究[J/OL]. 工程地质学报: 1-7[2021-05-28]. https://doi.org/10.13544/j.cnki.jeg.2019-128
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons