•  
  •  
 

Coal Geology & Exploration

Abstract

Prediction of the height of water flowing fractured zone based on PSO-BP neural network

Keywords

particle swarm optimization, BP neural network, height of water flowing fractured zone, influential factors, prediction model

DOI

10.3969/j.issn.1001-1986.2021.04.024

Reference

[1] FAN Limin, MA Xiongde, JIANG Zequan, et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology, 2019, 47(7): 1-30. 范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术, 2019, 47(7): 1-30.

[2] XU Zhimin, GAO Shang, CUI Siyuan, et al. Hydro-geological basic and practice for water-preserved mining in ecologically vulnerable area: A case study in Hami coalfield[J]. Journal of China Coal Society, 2017, 42(1): 80-87. 徐智敏, 高尚, 崔思源, 等. 哈密煤田生态脆弱区保水采煤的水文地质基础与实践[J]. 煤炭学报, 2017, 42(1): 80-87.

[3] FAN Limin. Some scientific issues in water-preserved coal mining[J]. Journal of China Coal Society, 2019, 44(3): 667-674. 范立民. 保水采煤面临的科学问题[J]. 煤炭学报, 2019, 44(3): 667-674.

[4] LOU Gaozhong, GUO Wenbing, GAO Jinlong. Prediction of the height of water flowing fractured zone under subcritical mining based on dimensional analysis[J]. Coal Geology & Exploration, 2019, 47(3): 147-153. 娄高中, 郭文兵, 高金龙. 基于量纲分析的非充分采动导水裂缝带高度预测[J]. 煤田地质与勘探, 2019, 47(3): 147-153.

[5] State Administration of Work Safety, National Coal Mine Safety Administration, National Energy Administration, et al. Specifications for coal pillar retention and compressed coal mining in buildings, water bodies, railways and main shafts[M]. Beijing: China Coal Industry Publishing House, 2017. 国家安全监管总局, 国家煤矿安监局, 国家能源局, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[M]. 北京: 煤炭工业出版社, 2017.

[6] XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society, 2012, 37(5): 762-769. 许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(5): 762-769.

[7] SHI Longqing, XIN Hengqi, ZHAI Peihe, et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining & Technology, 2012, 41(1): 37-41. 施龙青, 辛恒奇, 翟培合, 等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报, 2012, 41(1): 37-41.

[8] XU Zhimin, SUN Yajun, GAO Shang, et al. Law of mining induced water conduction fissure in arid mining area and its significance in water-preserved coal mining[J]. Journal of China Coal Society, 2019, 44(3): 767-776. 徐智敏, 孙亚军, 高尚, 等. 干旱矿区采动顶板导水裂隙的演化规律及保水采煤意义[J]. 煤炭学报, 2019, 44(3): 767-776.

[9] LI Chaofeng, HU Weiyue, WANG Yunhong, et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration, 2018, 46(1): 101-107. 李超峰, 虎维岳, 王云宏, 等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探, 2018, 46(1): 101-107.

[10] GUO Wenbing, LOU Gaozhong, ZHAO Baocai. Study on the height of water-conductive fracture zone in alternate overburden of soft and hard with top coal caving mining in Lugou coal mine[J]. Journal of Mining & Safety Engineering, 2019, 36(3): 519-526. 郭文兵, 娄高中, 赵保才. 芦沟煤矿软硬交互覆岩放顶煤开采导水裂缝带高度研究[J]. 采矿与安全工程学报, 2019, 36(3): 519-526.

[11] LI Zhenhua, XU Yanchun, LI Longfei, et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 905-910. 李振华, 许延春, 李龙飞, 等. 基于BP神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报, 2015, 32(6): 905-910.

[12] SHI Longqing, HUANG Jiyun, HAN Jin, et al. PCA-BP model for height prediction of water conducting fracture zone[J]. China Science paper, 2019, 14(5): 471-475. 施龙青, 黄纪云, 韩进, 等. 导水裂隙带高度预测的PCA-BP模型[J]. 中国科技论文, 2019, 14(5): 471-475.

[13] SHAO Liangshan, MA Han. Model of coal gas permeability prediction based on PSO-LSSVM[J]. Coal Geology & Exploration, 2015, 43(4): 23-26. 邵良杉, 马寒. 煤体瓦斯渗透率的PSO-LSSVM预测模型[J]. 煤田地质与勘探, 2015, 43(4): 23-26.

[14] MAO Zhiyong, HUANG Chunjuan, LU Shichang, et al. Model of gas-bearing permeability prediction based on APSO- WLS-SVM[J]. Coal Geology & Exploration, 2019, 47(2): 66-71. 毛志勇, 黄春娟, 路世昌, 等. 基于APSO-WLS-SVM的含瓦斯煤渗透率预测模型[J]. 煤田地质与勘探, 2019, 47(2): 66-71.

[15] WEN Zheng, SUN Huake. MATLAB smart algorithm[M]. Beijing: Tsinghua University Press, 2017. 温正, 孙华克. MATLAB智能算法[M]. 北京: 清华大学出版社, 2017.

[16] LYU Weicai, HUANG Hui, CHI Shenshen, et al. Neural network optimization algorithm for the prediction parameters of probability integral method[J]. Science of Surveying and Mapping, 2019, 44(9): 35-41. 吕伟才, 黄晖, 池深深, 等. 概率积分预计参数的神经网络优化算法[J]. 测绘科学, 2019, 44(9): 35-41.

[17] QIAN Feng. Particle swarm algorithm and its industrial application[M]. Beijing: Science Press, 2013. 钱锋. 粒子群算法及其工业应用[M]. 北京: 科学出版社, 2013.

[18] WANG Yuhong, LIU Lulu, FU Hua, et al. Study on predicted method of mine pressure bump based on improved BP neural network[J]. Coal Science and Technology, 2017, 45(10): 36-40. 王雨虹, 刘璐璐, 付华, 等. 基于改进BP神经网络的煤矿冲击地压预测方法研究[J]. 煤炭科学技术, 2017, 45(10): 36-40.

[19] WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740-3749. 王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740-3749.

[20] GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755-766. 郭文兵, 娄高中. 覆岩破坏充分采动程度定义及判别方法[J]. 煤炭学报, 2019, 44(3): 755-766.

[21] YIN Shangxian, XU Bin, XU Hui, et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology, 2013, 41(9): 138-142. 尹尚先, 徐斌, 徐慧, 等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术, 2013, 41(9): 138-142.

[22] HU Bingnan, ZHANG Huaxing, SHEN Baohong. Guidelines for coal pillar retention and compressed coal mining in buildings, water bodies, railways and main shafts[M]. Beijing: China Coal Industry Publishing House, 2017. 胡炳南, 张华兴, 申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017.

[23] WANG Zhengshuai, DENG Kazhong, TAN Zhixiang. Height prediction of water fractured zone based on fuzzy SVM[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(4): 723-727. 王正帅, 邓喀中, 谭志祥. 导水裂缝带高度预测的模糊支持向量机模型[J]. 地下空间与工程学报, 2011, 7(4): 723-727.

[24] FAN Zhenli. Mining safety research of thick coal seam under aquifers and surface water in Nalinhe mine area[D]. Beijing: China University of Mining and Technology(Beijing), 2013. 樊振丽. 纳林河复合水体下厚煤层安全可采性研究[D]. 北京: 中国矿业大学(北京), 2013.

[25] CAO Bo, BAI Gang, LI Hui. Prediction of gas content based on PCA-GA-BP neural network[J]. Journal of Safety Science and Technology, 2015, 11(5): 84-90. 曹博, 白刚, 李辉. 基于PCA-GA-BP神经网络的瓦斯含量预测分析[J]. 中国安全生产科学技术, 2015, 11(5): 84-90.

[26] HAN Liang, LIU Dianshu, LI Hongjiang, et al. BP neural network forecast of blasting muck pile form of high bench cast blasting based on Weibull model[J]. Journal of China Coal Society, 2013, 38(11): 1947-1952. 韩亮, 刘殿书, 李红江, 等. 基于Weibull模型的高台阶抛掷爆破爆堆形态BP神经网络预测[J]. 煤炭学报, 2013, 38(11): 1947-1952.

[27] ZANG Zijing, WU Haibo, ZHANG Pingsong, et al. Prediction of coal seam gas content based on ABC-BP model[J]. Coal Geology & Exploration, 2021, 49(2): 152-158. 臧子婧, 吴海波, 张平松, 等. 基于ABC-BP模型的煤层含气量预测[J]. 煤田地质与勘探, 2021, 49(2): 152-158.

[28] NING Yongxiang, CUI Ximin. PSO-ELM prediction model for surface deformation of mine slope[J]. Coal Geology & Exploration, 2020, 48(6): 201-206. 宁永香, 崔希民. 矿山边坡地表变形的PSO-ELM预测模型[J]. 煤田地质与勘探, 2020, 48(6): 201-206.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.