Coal Geology & Exploration
Abstract
Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse
Keywords
cyclic impact, voltage pressure pulse, microfracture, macerals, coal petrology
DOI
10.3969/j.issn.1001-1986.2021.04.013
Recommended Citation
LI Hengle, QIN Yong, ZHOU Xiaoting,
et al.
(2021)
"Development characteristics of coal microfracture and coal petrology control under cyclic high voltage electrical pulse,"
Coal Geology & Exploration: Vol. 49:
Iss.
4, Article 14.
DOI: 10.3969/j.issn.1001-1986.2021.04.013
Available at:
https://cge.researchcommons.org/journal/vol49/iss4/14
Reference
[1] ZHENG Jianyi, HE Wen. Review of research actuality and development directions of pulsed power technology[J]. Mechanical & Electrical Engineering Magazine, 2008, 25(4): 1–4. 郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电工程, 2008, 25(4): 1–4.
[2] WANG Ying. A review of pulsed power technology[J]. Electrical Engineering, 2009, 10(4): 5–9. 王莹. 脉冲功率技术综述[J]. 电气技术, 2009, 10(4): 5–9.
[3] JIANG Weihua. Repetition rate pulsed power technology and its applications: (1)Introduction[J]. High Power Laser and Particle Beams, 2012, 24(1): 10–15. 江伟华. 高重复频率脉冲功率技术及其应用: (1)概述[J]. 强激光与粒子束, 2012, 24(1): 10–15.
[4] SUN Yaohong, SUN Guangsheng, YAN Ping, et al. The development of the electric pulse oil-mining technology[J]. High Voltage Engineering, 2002, 28(1): 41–42. 孙鹞鸿, 孙广生, 严萍, 等. 高压电脉冲采油技术发展[J]. 高电压技术, 2002, 28(1): 41–42.
[5] SHI Daohan, WANG Donglin, LIU Shubing. Analysis and application on the mechanism of plug removal with electric plus[J]. Oil Drilling & Production Technology, 2002, 24(3): 73–74. 石道涵, 王栋林, 刘书炳. 电脉冲解堵技术增产机理分析及应用[J]. 石油钻采工艺, 2002, 24(3): 73–74.
[6] LU Xiaobing, WANG Shouhu, SUI Lei, et al. Analysis and application of electronic pulse de-plugging and injection-adding mechanism[J]. Natural Gas and Oil, 2011, 29(6): 61–62. 陆小兵, 王守虎, 隋蕾, 等. 电脉冲解堵增注机理分析及应用[J]. 天然气与石油, 2011, 29(6): 61–62.
[7] QIU Aici, ZHANG Yongmin, LYU Xiaolin, et al. Application of high power pulse technology in unconventional gas development[C]//Proceedings of the Second Energy Forum of Chinese Academy of Engineering/National Energy Administration. Beijing: Chemical Industry Press, 2012: 1112–1124. 邱爱慈, 张永民, 吕晓琳, 等. 高功率脉冲技术在非常规天然气开发中应用的设想[C]//中国工程院/国家能源局第二届能源论坛论文集. 北京: 化学工业出版社, 2012: 1112–1124.
[8] BAI Jianmei, CHENG Hao, ZU Shiqiang, et al. Discussion on feasibility of enhancing production of low-production CBM wells by using powerful pulse techniques[J]. China Coalbed Methane, 2010, 7(6): 24–26. 白建梅, 程浩, 祖世强, 等. 大功率脉冲技术对低产煤层气井增产可行性探讨[J]. 中国煤层气, 2010, 7(6): 24–26.
[9] QIN Yong, QIU Aici, ZHANG Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1–7. 秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1–7.
[10] LI Hengle, QIN Yong, ZHANG Yongmin, et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society, 2015, 40(4): 915–921. 李恒乐, 秦勇, 张永民, 等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报, 2015, 40(4): 915–921.
[11] LI Hengle. Behavior and mechanism of fracturing and enhanced-permeability of coals with electric pulse stress waves[D]. Xuzhou: China University of Mining and Technology, 2015. 李恒乐. 煤岩电脉冲应力波致裂增渗行为与机理[D]. 徐州: 中国矿业大学, 2015.
[12] LU Hongqi. Experimental research on fracturing coal with high-voltage electrical pulse[D]. Beijing: China University of Mining and Technology(Beijing), 2015. 卢红奇. 高压电脉冲对煤体致裂作用实验研究[D]. 北京: 中国矿业大学(北京), 2015.
[13] ZHOU Xiaoting. Coal petrology analysis of effect for enhancing coal reservoir permeability with repetitive electric pulses wave[D]. Xuzhou: China University of Mining and Technology, 2016. 周晓亭. 重复电脉冲波煤岩致裂增渗效果岩石学分析[D]. 徐州: 中国矿业大学, 2016.
[14] ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017. 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4): 1009–1017.
[15] ZHANG Yongmin, QIU Aici, QIN Yong. Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017, 45(9): 79–85. 张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79–85.
[16] YAN Fazhi. Experimental study on pulses induced fracturing and permeability enhancing of coal blocks based on the electrical fragmentation effect[D]. Xuzhou: China University of Mining and Technology, 2017. 闫发志. 基于电破碎效应的脉冲致裂煤体增渗实验研究[D]. 徐州: 中国矿业大学, 2017.
[17] BIAN Decun. Research on the shock wave characteristics of pulsed discharge under hydrostatic pressure and its fracturing effect on rock mass[D]. Taiyuan: Taiyuan University of Technology, 2018. 卞德存. 静水压下脉冲放电冲击波特性及其岩体致裂研究[D]. 太原: 太原理工大学, 2018.
[18] GUO Zhidong, ZENG Wenting, FANG Huijun, et al. Initial application of intense repeated pulse wave for stimulating CBM reservoirs[J]. China Petroleum Exploration, 2019, 24(3): 397–402. 郭智栋, 曾雯婷, 方惠军, 等. 重复脉冲强冲击波技术在煤储层改造中的初步应用[J]. 中国石油勘探, 2019, 24(3): 397–402.
[19] ZHANG Yongmin, MENG Zuzhi, QIN Yong, et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction: A case of Zhongjing Mine, Shuicheng, Guizhou Province, China[J]. Journal of China Coal Society, 2019, 44(8): 2388–2400. 张永民, 蒙祖智, 秦勇, 等. 松软煤层可控冲击波增透瓦斯抽采创新实践: 以贵州水城矿区中井煤矿为例[J]. 煤炭学报, 2019, 44(8): 2388–2400.
[20] ZHANG Yongmin, AN Shigang, CHEN Dianfu, et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode coal mine 8# coal seam[J]. Safety in Coal Mines, 2019, 50(10): 14–17. 张永民, 安世岗, 陈殿赋, 等. 可控冲击波增透保德煤矿8#煤层的先导性试验[J]. 煤矿安全, 2019, 50(10): 14–17.
[21] AN Shigang, CHEN Dianfu, ZHANG Yongmin, et al. Application of controllable electric pulse wave permeability-enhancing technology in the low-permeability coal seams[J]. Coal Geology & Exploration, 2020, 48(4): 138–145. 安世岗, 陈殿赋, 张永民, 等. 可控电脉冲波增透技术在低透气性煤层中的应用[J]. 煤田地质与勘探, 2020, 48(4): 138–145.
[22] QIN Yong, LI Hengle, ZHANG Yongmin, et al. Numerical analysis on CSW fracturing behavior of coal seam under constraint of geological and engineering conditions[J]. Coal Geology & Exploration, 2021, 49(1): 108–118. 秦勇, 李恒乐, 张永民, 等. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析[J]. 煤田地质与勘探, 2021, 49(1): 108–118.
[23] XU Hao, TANG Dazhen. Research progress of control mechanism of coal petrology on CBM production[J]. Coal Science and Technology, 2016, 44(6): 140–145. 许浩, 汤达祯. 基于煤层气产出的煤岩学控制机理研究进展[J]. 煤炭科学技术, 2016, 44(6): 140–145.
[24] FAN Qizhang, CAI Yidong, BEI Jinhan, et al. Pore and fracture structure of coal reservoir constrained by coal metamorphism[J]. Geoscience, 2020, 34(2): 273–280. 樊祺章, 蔡益栋, 贝金翰, 等. 煤岩演化程度对煤储层孔裂隙结构的控制作用[J]. 现代地质, 2020, 34(2): 273–280.
[25] YAO Yanbin, LIU Dameng, TANG Dazhen, et al. Influence and control of coal petrological composition on the development of microfracture of coal reservoir in the Qinshui Basin[J]. Journal of China University of Mining & Technology, 2010, 39(1): 6–13. 姚艳斌, 刘大锰, 汤达祯, 等. 沁水盆地煤储层微裂隙发育的煤岩学控制机理[J]. 中国矿业大学学报, 2010, 39(1): 6–13.
[26] GUO Li, DUAN Lindi, ZHANG Chunlei, et al. Relationship between microlithotype and cleat distribution in coal bed[J]. Coal Geology & Exploration, 2005, 33(5): 9–11. 郭莉, 段林娣, 张春雷, 等. 煤层显微煤岩类型与裂隙分布的关系[J]. 煤田地质与勘探, 2005, 33(5): 9–11.
[27] FAN Zhangqun, SONG Xiaozhong. Characteristics of semi-vitrinite of the Mesozoic coal in Xinjiang area and their research significance[J]. Coal Geology & Exploration, 2014, 42(5): 9–12. 范章群, 宋孝忠. 新疆中生代煤中半镜质组特征及其研究意义[J]. 煤田地质与勘探, 2014, 42(5): 9–12.
[28] HAN Ruoyu, ZHOU Haibin, LIU Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅰ. fundamental mechanisms and processes[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 3999–4008.
[29] ZHOU Haibin, HAN Ruoyu, LIU Qiaojue, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅱ. influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4009–4016.
[30] ZHOU Haibin, ZHANG Yongmin, LI Hengle, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: Ⅲ. shock wave characteristics with three discharge loads[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4017–4023.
[31] LIU Qiaojue, DING Weidong, HAN Ruoyu, et al. Fracturing effect of electrohydraulic shock waves generated by plasma-ignited energetic materials explosion[J]. IEEE Transactions on Plasma Science, 2017, 45(3): 423–431.
[32] FU Xuehai, QIN Yong, XUE Xiuqian, et al. Research on fractals of pore and fracture structure of coal reservoirs[J]. Journal of China University of Mining & Technology, 2001, 30(3): 225–228. 傅雪海, 秦勇, 薛秀谦, 等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报, 2001, 30(3): 225–228.
[33] WANG Dengke, LIU Shumin, WEI Jianping, et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining and Safety Engineering, 2017, 34(3): 594–600. 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报, 2017, 34(3): 594–600.
[34] VOGELS M, ZOECKLER R, STASIW D M, et al. P. F. Verhulst's"notice sur la loi que la populations suit dans son accroissement"from correspondence mathematique et physique. Ghent, vol. X, 1838[J]. Journal of Biological Physics, 1975, 3(4): 183–192.
[35] PEARL R, REED L J. On the rate of growth of the population of the United States since 1790 and its mathematical representation[J]. Proceedings of the National Academy of Sciences, 1920, 6(6): 275–288.
[36] CUI Dangqun. Analysis and making good fitting degree test for logistic curve regression equation[J]. Journal of Applied Statistics and Management, 2005, 24(1): 112–115. 崔党群. Logistic曲线方程的解析与拟合优度测验[J]. 数理统计与管理, 2005, 24(1): 112–115.
[37] SONG Zhijie, TANG Xiaoli. Research on the development of information industry in China based on the logistic model[J]. Mathematics in Practice and Theory, 2019, 49(5): 151–159. 宋之杰, 唐晓莉. 基于Logistic模型的我国信息产业演化发展研究[J]. 数学的实践与认识, 2019, 49(5): 151–159.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons