Coal Geology & Exploration
Abstract
The drillability classification of the surrounding rock during the drilling process of coal mine gas drainage through the Mechanical Specific Energy(MSE) can provide a basis for the drilling rig to adjust the drilling parameters. Aiming at the problems of difficulty and low efficiency of manual layer identification in the process of gas drainage and drilling, a coal and rock drillability classification method based on MSE as the drillability evaluation index combined with Extreme Learning Machine(ELM) is proposed. A simulation model of PDC bit crushing rock was established by ABAQUS, and the changing law of drilling speed and MSE in the process of PDC bit crushing rock was studied from three aspects: material type, rotation speed and drilling pressure. At the same time, training data including drilling parameters and MSE were obtained. The ELM is used to learn the data such as drilling parameters and MSE. Finally, the classification accuracy under the two drillability classification indicators is compared. The results show that the accuracy rate of classification when the MSE is used as the index of drillability is over 90%, which is higher than the drilling parameters. The classification results can provide a theoretical basis for drilling rigs to adjust drilling parameters and realize adaptive drilling.
Keywords
coal mine drilling rig, PDC drill bit, Mechanical Specific Energy(MSE), Extreme Learning Machine(ELM), drillability
DOI
10.3969/j.issn.1001-1986.2021.03.030
Recommended Citation
XIE Zhijiang, CHANG Xue, YANG Lin,
et al.
(2021)
"Classification method of coal and rock drillability based on Mechanical Specific Energy theory,"
Coal Geology & Exploration: Vol. 49:
Iss.
3, Article 31.
DOI: 10.3969/j.issn.1001-1986.2021.03.030
Available at:
https://cge.researchcommons.org/journal/vol49/iss3/31
Reference
[1] 姚克,田宏亮,姚宁平,等. 煤矿井下钻探装备技术现状及展望[J]. 煤田地质与勘探,2019,47(1):1-5. YAO Ke,TIAN Hongliang,YAO Ningping,et al. Present situation and prospect of drilling equipment technology in coal mine[J]. Coal Geology & Exploration,2019,47(1):1-5.
[2] 姚宁平,孙荣军,叶根飞. 我国煤矿井下瓦斯抽放钻孔施工装备与技术[J]. 煤炭科学技术,2008,36(3):12-16. YAO Ningping,SUN Rongjun,YE Genfei. Equipment and technology of borehole construction for gas drainage in China underground mines[J]. Coal Science and Technology,2008,36(3):12-16.
[3] 杨林. 煤矿井下瓦斯抽采钻孔机器人研究现状及关键技术[J].煤矿机械,2018,39(8):60-62. YANG Lin. Research status and key technology of underground gas drainage drilling robot in coal mine[J]. Coal Mine Machinery,2018,39(8):60-62.
[4] 王清峰,陈航. 瓦斯抽采智能化钻探技术及装备的发展与展望[J]. 工矿自动化,2018,44(11):18-24. WANG Qingfeng,CHEN Hang. Development and prospect on intelligent drilling technology and equipment for gas drainage[J]. Industry and Mine Automation,2018,44(11):18-24.
[5] PENG S S,SASAOKA T,DAVID X T,et al. Mine roof geology information system[J]. Coal Age,2005,110(5):44-49.
[6] 刘少伟,冯友良,刘栋梁. 煤巷层状顶板岩石钻进动态响应特性数值试验[J]. 岩石力学与工程学报,2014,33(增刊1):3170-3176. LIU Shaowei,FENG Youliang,LIU Dongliang. Numerical experiments of dynamic response characteristics of rock drilling on stratified roof in coal roadway[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(Sup.1):3170-3176.
[7] 李鑫涛. 煤巷顶板锚固孔钻进特性试验研究[D]. 焦作:河南理工大学,2015. LI Xintao. Study on the roof drilling characteristics experiment of anchorage hole in coal roadway[D]. Jiaozuo:Henan Polytechnic University,2015.
[8] 张幼振,张宁,邵俊杰,等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报,2019,44(8):2328-2335. ZHANG Youzhen,ZHANG Ning,SHAO Junjie,et al. Fuzzy identification of coal-bearing strata lithology based on drilling parameter clustering[J]. Journal of China Coal Society,2019, 44(8):2328-2335.
[9] YUE Z Q,LEE C F,LAW K T,et al. Automatic monitoring of rotary-percussive drilling for ground characterization:Illustrated by a case example in Hong Kong[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(4):573-612.
[10] 李昌盛,赵金海,杨传书,等. 钻头工作效率实时评估新方法[J]. 石油钻采工艺,2012,34(6):1-4. LI Changsheng,ZHAO Jinhai,YANG Chuanshu,et al. Novel approach for assessing real-time bit working efficiency[J]. Oil Drilling & Production Technology,2012,34(6):1-4.
[11] 孟英峰,杨谋,李皋,等. 基于机械比能理论的钻井效率随钻评价及优化新方法[J]. 中国石油大学学报(自然科学版),2012,36(2):110-114. MENG Yingfeng,YANG Mou,LI Gao,et al. New method of evaluation and optimization of drilling efficiency while drilling based on mechanical specific energy theory[J]. Journal of China University of Petroleum(Edition of Natural Science),2012,36(2):110-114.
[12] TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1965,2(2):245.
[13] 王路,王瑞琮,徐亮,等. 关于机械比能的钻井优化设计[J]. 中国化工贸易,2017,9(14):19. WANG Lu,WANG Ruicong,XU Liang,et al. Optimal design of drilling on mechanical specific energy[J]. China Chemical Trade,2017,9(14):19.
[14] 徐济银,王吉东,蒋杰. 比能在钻头选型中的应用[J]. 钻采工艺,1996,19(6):86-89. XU Jiyin,WANG Jidong,JIANG Jie. Application of specific energy in bit selection[J]. Drilling & Production Technology,1996,19(6):86-89.
[15] HUANG Guangbin,ZHU Qinyu,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1/2/3):489-501.
[16] 陆慧娟,魏莎莎,宋夫华,等. 一种Fibonacci优化理论的改进ELM分类方法[J]. 小型微型计算机系统,2015,36(12):2745-2748. LU Huijuan,WEI Shasha,SONG Fuhua,et al. ELM algorithm based on fibonacci method optimization algorithm[J]. Journal of Chinese Computer Systems,2015,36(12):2745-2748.
[17] 李爱莲,詹万鹏,崔桂梅,等. 基于ELM模型的焦炉火道温度预测研究[J]. 计算机与应用化学,2016,33(4):507-510. LI Ailian,ZHAN Wanpeng,CUI Guimei,et al. The researches of coke oven flue temperature prediction based on ELM[J]. Computers and Applied Chemistry,2016,33(4):507-510.
[18] 宋玛君. 基于ELM神经网络的研究与应用[D]. 南京:南京信息工程大学,2016. SONG Majun. The research and application based on ELM neural network[D]. Nanjing:Nanjing University of Information Science & Technology,2016.
[19] BARTLETT P L. The sample complexity of pattern classification with neural networks:the size of the weights is more important than the size of the network[J]. IEEE Transactions on Information Theory,1998,44(2):525-536.
[20] DENG Chenwei,HUANG Guangbin,XU Jia,et al. Extreme learning machines:new trends and applications[J]. Science China:Information Sciences,2015,58(2):1-16.
[21] 杨勇,邵兵,王风锐,等. 基于Lagrange显式算法的井壁侧钻过程动态破碎规律[J]. 煤炭学报,2015,40(7):1491-1497. YANG Yong,SHAO Bing,WANG Fengrui,et al. Dynamic crushing mechanism of well-wall in engraving stage of sidetracking based on Lagrange explicit algorithm[J]. Journal of China Coal Society,2015,40(7):1491-1497.
[22] 李琴,刘永升,黄志强,等. PDC钻头切削破岩机理及数值模拟研究[J]. 机械科学与技术,2016,35(2):203-209. LI Qin,LIU Yongsheng,HUANG Zhiqinag,et al. Exploring mechanism and numerical simulation of rock breaking process using PDC bit[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(2):203-209.
[23] 马德坤. 岩石同钻头的互相作用与井斜[J]. 西南石油大学学报(自然科学版),1983(3):51-62. MA Dekun. Mutual action between rock and bit and wellbore deviation[J]. Journal of Southwest Petroleum University(Science & Technology Edition),1983(3):51-62.
[24] 林铁军,练章华,孟英峰,等. 空气钻井中动态破岩有限元仿真研究[J]. 岩石力学与工程学报,2008,27(增刊2):3592-3597. LIN Tiejun,LIAN Zhanghua,MENG Yingfeng,et al. Finite elements method study on dynamic rock breaking in air drilling[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(Sup.2):3592-3597.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons