•  
  •  
 

Coal Geology & Exploration

Abstract

In-seam wave seismic exploration, featured in wide detection range and high accuracy, plays an increasingly important role in the refined exploration of coal geological structures. However, most seismic exploration equipment is bulky, with a large number of cables are laid in construction, leading to low efficiency and high construction cost. This seriously restricts the development of high-precision in-seam wave seismic exploration technology in underground coal mines. Based on the design concept of nodal seismograph, the moving coil geophone is integrated into a complete cavity with the acquisition and control circuit, the time precision keeping circuit and the power supply circuit. The system is flexible and unconstrained, which solves the problem of multi-channel seismic data acquisition under complex working conditions in underground coal mine. The timing synchronization device is designed, and the timing synchronization between each acquisition unit is solved by the clock mechanism of GPS timing and temperature-complementary crystal oscillator. Then the acquisition system is miniaturized, lightweight and highly integrated. After laboratory and field tests, all the performance indicators meet the design requirements.

Keywords

in-seam wave detection, mine seismograph, single-component, non-cable

DOI

10.3969/j.issn.1001-1986.2021.03.028

Reference

[1] 程建远,江浩,姬广忠,等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术,2015,43(2):25-28. CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al. Channel wave seismic exploration technology based on node digital seismograph in underground mine[J]. Coal Science and Technology,2015,43(2):25-28.

[2] 程建远,覃思,陆斌,等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探,2019,47(3):1-9. CHENG Jianyuan,QIN Si,LU Bin,et al. The development of seismic-while-mining detection technology in underground coal mines[J]. Coal Geology & Exploration,2019,47(3):1-9.

[3] 杨雪,宋俊磊,王典洪,等. 槽波地震勘探仪器的发展现状[J]. 煤田地质与勘探,2017,45(1):114-120. YANG Xue,SONG Junlei,WANG Dianhong,et al. Development status of instruments for in-seam seismic exploration[J]. Coal Geology & Exploration,2017,45(1):114-120.

[4] 丛森,程建远,王云宏,等. 煤矿微震监测技术现状与发展前景[J]. 中国矿业,2016,25(12):87-93. CONG Sen,CHENG Jianyuan,WANG Yunhong,et al. The development review of mining microseismic monitoring technology and its future outlook[J]. China Mining Magazine,2016,25(12):87-93.

[5] 朱铉. 数字地震仪的发展历史及展望[J]. 地球物理学进展,2002,17(2):301-304. ZHU Xuan. The history and prospect of seismic recording system[J]. Progress in Geophysics,2002,17(2):301-304.

[6] 汉泽西,李彪,邵媛,等. 地震检波器发展初探[J]. 石油仪器,2006,20(6):1-4. HAN Zexi,LI Biao,SHAO Yuan,et al. Research on the development of seismic geophones[J]. Petroleum Instruments,2006,20(6):1-4.

[7] 刘光林,刘泰生,高中录,等. 地震检波器的发展方向[J]. 勘探地球物理进展,2003,26(3):178-185. LIU Guanglin,LIU Taisheng,GAO Zhonglu,et al. On the development trend of seismic geophones[J]. Progress in Exploration Geophysics,2003,26(3):178-185.

[8] 王季,李刚,吴国庆,等. 采煤工作面地质异常体透射槽波探测技术[J]. 煤炭科学技术,2016,44(6):159-163. WANG Ji,LI Gang,WU Guoqing,et al. Transmitted channel wave detecting technology of geologic anomalous body in coal mining face[J]. Coal Science and Technology,2016,44(6):159-163.

[9] 王季. 反射槽波探测采空巷道的实验与方法[J]. 煤炭学报,2015,40(8):1879-1885. WANG Ji. Experiment and method of void roadway detection using reflected in-seam wave[J]. Journal of China Coal Society,2015,40(8):1879-1885.

[10] 崔伟雄,王保利,王云宏. 基于透射槽波的工作面煤层厚度高精度反演方法[J]. 煤炭学报,2020,45(7):2482-2490. CUI Weixiong,WANG Baoli,WANG Yunhong,et al. High-precision inversion method of coal seam thickness based on transmission channel wave[J]. Journal of China Coal Society,2020,45(7):2482-2490.

[11] 李刚,王季,牛欢,等. 透射槽波探测煤矿陷落的方法及应用[J]. 煤炭技术,2016,35(12):135-137. LI Gang,WANG Ji,NIU Huan,et al. Method and application of transmitted in-seam wave in detectingmine collapse[J]. Coal Technology,2016,35(12):135-137.

[12] 赵朋朋. 槽波透射与反射联合勘探在小构造探测中的应用[J]. 煤炭工程,2017,49(5):47-50. ZHAO Pengpeng. Application of ISS transmission and reflection method in detection of small structures[J]. Coal Engineering,2017,49(5):47-50.

[13] 汤红伟. 相同条件下数字检波器与模拟检波器的三维地震勘探效果对比分析[J]. 中国煤炭地质,2017,29(10):76-80. TANG Hongwei. Comparative analysis of digital geophone and analog geophone 3D seismic prospecting results under same conditions[J]. Coal Geology of China,2017,29(10):76-80.

[14] 张志锋,刘胜,刘远志,等. 数字检波器与模拟检波器采集效果对比[J]. 物探装备,2013,23(1):1-7. ZHANG Zhifeng,LIU Sheng,LIU Yuanzhi,et al. Acquisition data comparison between digital geophone and analog geophone[J]. Equipment for Geophysical Prospecting,2013,23(1):1-7.

[15] 魏继东. 模拟与数字检波器记录精度对比及其对信噪比的影响[J]. 地球物理学进展,2018,33(4):1726-1733. WEI Jidong. Comparison of recording accuracy between analog geophone and MEMS accelerometer and their influence to the S/N ratio[J]. Progress in Geophysics,2018,33(4):1726-1733.

[16] 吴海. 矿井节点式槽波探测仪研制[J]. 煤炭技术,2016,35(11):281-283. WU Hai. Development on mining node type in-seam wave detector[J]. Coal Technology,2016,35(11):281-283.

[17] 吴海. 防爆无缆遥测地震仪在煤矿槽波勘探中的应用[J]. 煤田地质与勘探,2014,42(4):86-89. WU Hai. Application of explosion-proof telemetry seismograph used in channel wave exploration[J]. Coal Geology & Exploration,2014,42(4):86-89.

[18] 张庆庆,吴海. 矿用节点式地震仪研制[J]. 煤炭技术,2017,36(6):251-253. ZHANG Qingqing,WU Hai. Research of mine node type seismic exploration instrument[J]. Coal Technology,2017,36(6):251-253.

[19] 江浩. MAX14571在矿用本质安全电源中的应用[J]. 煤炭技术,2015,34(1):282-284. JIANG Hao. Application of MAX14571 in mining intrinsically safe power[J]. Coal Technology,2015,34(1):282-284.

[20] 董建国,李艳民,周兴东,等. 本安电源降低火花能量的几个措施[J]. 煤矿安全,2020,51(3):97-99. DONG Jianguo,LI Yanmin,ZHOU Xingdong,et al. Several methods of reducing discharge energy for intrinsic safety power supply[J]. Safety in Coal Mines,2020,51(3):97-99.

[21] 张庆庆. 煤矿微震监测孔中检波器研制[J]. 煤炭技术,2017,36(1):256-257. ZHANG Qingqing. Research on mine microseismic monitoring hole geophone[J]. Coal Technology,2017,36(1):256-257.

[22] 田入运,吕世学,林君,等. 单通道无线存储式地震仪关键技术[J]. 地球物理学报,2016,60(11):4273-4281. TIAN Ruyun,LYU Shixue,LIN Jun,et al. Key techniques of single channel wireless storage seismograph[J]. Chinese Journal of Geophysics,2016,60(11):4273-4281.

[23] 苏文,陈祖斌. 动圈式地震检波器标定技术及其发展趋势[J]. 煤炭技术,2014,33(10):70-73. SU Wen,CHEN Zubin. Calibration technique of seismic moving-coil geophone and trend of Calibration[J]. Coal Technology,2014,33(10):70-73.

[24] 王盼,张锋,吴海,等. 矿井节点地震仪低功耗时间同步系统设计[J]. 煤炭技术,2015,34(1):263-265. WANG Pan,ZHANG Feng,WU Hai,et al. Designing on lower-power time-synchronization system for node seismograph used in coal mines[J]. Coal Technology,2015,34(1):263-265.

[25] 王丽秋. 基于LEA-5T的快速高精度授时系统[J]. 现代电子技术,2012,35(21):184-186. WANG Liqiu. High precision and fast timing system based on LEA-5T[J]. Modern Electronics Technique,2012,35(21):184-186.

[26] 王云宏,江浩,王盼,等. GPS授时地震仪走时误差校正[J]. 煤田地质与勘探,2015,43(3):91-94. WANG Yunhong,JIANG Hao,WANG Pan,et al. Correction of travel time error of seismograph with GPS clock[J]. Coal Geology & Exploration,2015,43(3):91-94.

[27] 王保利. 随采地震数据处理软件开发与应用[J]. 煤田地质与勘探,2019,47(3):29-34. WANG Baoli. Development and application of software in seismic while mining data processing[J]. Coal Geology & Exploration,2019,47(3):29-34.

[28] 王博. 基于Android系统的多功能矿用本安型钻孔成像仪设计与应用[J]. 煤炭技术,2019,38(5):151-154. WANG Bo. Design and application of multifunctional mining intrinsic safety drill imager based on Android system[J]. Coal Technology,2019,38(5):151-154.

[29] 罗福龙. 地震检波器技术标准化探索[J]. 石油管材与仪器,2019,5(1):7-13. LUO Fulong. Discussion on standardization of geophone technology[J]. Petroleum Tubular Goods&Instruments,2019,5(1):7-13.

[30] 王福增. 煤矿井下电磁环境评价[J]. 工矿自动化,2014,40(12):21-25. WANG Fuzeng. Evaluation of underground electromagnetic environment[J]. Industry and Mine Automation,2014,40(12):21-25.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.